ANALYSIS OF VISUAL CONTENTS

Complementary information for computer vision applications

Sylvie Chambon

October 24th, 2023

SAUTOS

Institut de Recherche en Informatique de Toulouse

Matching : Combine correlation measure to be robust to occlusions

Post-Doctorate IRIT, Toulouse 2005-2006

Registration : Feature detection in medical multi-modal images for precise organ tracking

2006

Post-doctorate LTCI-UPM, Paris 2006-2007

Segmentation : Minimal path selection for thin object segmentation

Segmentation : Combine multiple features (line, plan, horizon) for urban scene comprehension

WHAT AM I INTERESTED IN?

Analysis of complementary static and dynamic visual content Understand visual scenes to provide tools helping humans in their environment

WHAT AM I INTERESTED IN?

Analysis of complementary static and dynamic visual content Understand visual scenes to provide tools helping humans in their environment

WHAT AM I INTERESTED IN?

Analysis of complementary static and dynamic visual content Understand visual scenes to provide tools helping humans in their environment

Feature detection

Matching

Segmentation

MAIN LINK BETWEEN RESEARCHES CARRIED OUT

1. Combine all accessible information sources [Chambon 07]

2. Combine all types of intermediate results [Bauda 15]

3. In order to match/to combine all the available information in the **best possible way** [Chambon 11a]

IMPORTANT POINTS FOR ACADEMIC AND APPLIED RESEARCH

Comprehensive bibliography always linked with teaching

IMPORTANT POINTS FOR ACADEMIC AND APPLIED RESEARCH

Intensive evaluations and comparisons for real applications [Chambon 11b]

WHO IS WORKING WITH ME?

A robust, guaranteed approach, preserving details

Our computation of the skeleton And the ϵ -approximation (Hausdorff) Voronoï computation of the skeleton

View-Dependent 3D Saliency Approach

User study

(a) Graphical interface of our user study

(b) Cameras set-up

(c) Extract of our 3D models database

3D RECONSTRUCTION QUALITY ASSESSMENT

Leverage intrinsic metrics to detect the regions needing improvement

Reconstructed geometry

Roughness [Lavoué 2009]

Curvature [Meyer 2003]

1 Introduction

- 2 Points of interest detection and description
- 3 2D/3D point matching
- 4 Multi-video analysis

Performances

- Human physical system mature at 1 year old
- \neq Human visual system mature at 4 years old
- \blacktriangleright pprox 1 méga pixels
- Identification time: \approx 100*ms*
- Number of memorised scenes: \approx 100000

Objectifs : Achieve human system performance

Goals : Use machines to perform difficult or laborious human tasks

System : scene + lighting source + sensor

Pipeline : acquisition, treatment (recognition + interpretation), decision

Image Transformation Low Level (Near acquisition) Compression / Quantization Restoration / Enhancement Transformation / Filtering High Level (Near analysis) Edge detection Points of interest detection Segmentation

Image comprehension

3D reconstruction Calibration Matching Reconstruction

Shape recognition

Scene understanding

WHAT IS LEARNING?

Supervised learning

- <u>Def.</u> Produce programs capable of performing a task without explicitly coding it
 - Program learns from its experience to perform the task
- only if Performance measure (a cost) increasing with experience [Mitchell 97]
 - Requires two elements:
 - 1. Learning set (annotated data)
 - 2. Construction of a predictor for minimizing the difference *between* the actual labels/values and the predicted labels

Most famous algorithms

- Decision trees [Quinlan 86]
- Random forests [Breiman 01]
- Neural network [McCulloch 43]

Why Neural Networks is popular since 2010?

Neuron: closely related to the concept of neurons in biology
Perceptron: several inputs, stored in the vector x weigthed, with weights stored in w allowing one output response y [Rosenblatt 58]:

$$y = f(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b), \tag{1}$$

where *b* a bias

and f the activation function

<u>Rk:</u> Perceptron model does not allow the resolution of non-linear problems [Marvin 69]

[Rumelhart 86]: taking into account several layers:

- Input layer (the data)
- Output layer (the result)
- Intermediate layers (hidden layers)
- Deep learning: Networks with at least 2 hidden or intermediate layers
- LeNet network [Lecun 98]: 5 layers
- AlexNet network [Krizhevsky 12]: several dozen of layers

WHY NEURAL NETWORKS IS POPULAR SINCE 2010?

Neuron-based approaches requirements/drawbacks

- 1. Important calculations
- 2. Annotated database of sufficient size to carry out the learning phase correctly

Key elements in overcoming these obstacles

- 1. Increase of access to data acquisition systems
- 2. Increase of access data sets (data sharing and transfer)
- 3. Data anotation easier (crowdsourcing platforms)
- 4. Computing power greater
- 5. A better understanding and use of the learning activation function sigmoid, partly responsible for the initial poor results reLU function, rectified Linear Unit [Nair 10]
- Famous works: [LeCun 15, Goodfellow 16]

Is the problem well defined? Can I give explicit caracteristics of the objects to detect/to segment?

Edge detection Minimal Path Selection [Amhaz 16]

POINTS OF INTEREST DETECTION AND DESCRIPTION

WHAT IS 2D/3D POINTS OF INTEREST?

- Primitive = an element that can be extracted from an image in order to obtain information characteristic of the scene such as the presence of an object, a distance, a relief (i.e. an altitude or a depth)
- primitives = pixels, regions, contours, polygons, any set of points to obtain the desired information
- Primitive of interest points of interest

Original Image

(1) Probability map calculation

(2) Non-local maxima suppression

(3) Post-processing (Selection)

- Without Non-local maxima suppression Badly distributed points
- Without Selection
 - Points well distributed across the entire image
 - But Some features are not sufficiently salient to be tracked correctly (high risk of tracking errors)
 - And Some parts of the image have no points of interest to follow

The **repeatability** of a primitive corresponds to its ability to be detected regardless of the image or data in which it appears. More precisely, if a primitive is detected in a given representation, then it must also be detected in another representation.

If we note:

- **p**, a point of interest in image *I*₁
- p' his theoritical homologous in an other image, I₂ then the primitive is repeatable if it exists a point q, detected in I₂ such as:

$$\|\mathbf{p}'-\mathbf{q}\|\leq\epsilon.$$

- Accuracy: excat location
- Robust to occlusions
- Invariant to image transformations
- Robust againt noise, blur or compression
- Dense point distribution guranteed
- Fast

Scale:

- Level of detail used to observe/analyze the image
 Related to convolution/filtering of the image
 - The greater the smoothing, the more fine details are lost, the smoother the image
- Résolution : Different resolutions of the images or objects manipulated
- = Size of the image studied

Gradual downsizing of the image

The smaller the image, the more fine details are lost

MULTI-RESOLUTION OR MULTI-SCALE?

What is the purpose of the descriptor relative to the detector?

What is the purpose of the descriptor relative to the detector?

- Detector
- = Determines if it is a point of interest or not
- Descriptor
- = All the caracteristics used for tracking or matching
- All the features used for tracking/matching
- Using the detector response to track is is not efficient Two solutions for tracking
 - 1. Simple correlation measure of intensities/colors
 - 2. Descriptors like SIFT, Scale-invariant feature transform

2D/3D MATCHING: STATE OF THE ART

Region [Tuytelaars 04, Deng 07]

First-Order [Harris 88] [Mikolajczyk 04] Second-Order [Kitchen 82] [Lowe 04] [Deng 07]

Multi-resolution

2D/3D MATCHING: STATE OF THE ART

Region [Tuytelaars 04, Deng 07]

First-Order [Harris 88] [Mikolajczyk 04]

Our contributions [Rashwan 19]

Second-Order [Kitchen 82] [Lowe 04] [Deng 07]

Multi-resolution

	First order	Region	Second order
Single scale	Moravec 1980, Harris 1988	SUSAN 1997, FAST 2006, MSER Matas2002, IBR 2004	Beaudet 1978, Kitchen 1982
Multi-scale	Harris-laplace 2004	Kadir 2004, EBR 2004	Hessien- Laplace 2004, SIFT 2004, SURF 2008, CSS 1998, <i>MFC</i> 2017
		PCBR 2007	

INVARIANT DETECTORS

Detector	Photometrical Affine	Geometrical Non-affine	Geometrical affine	Scale transformation
Moravec,Harris				
Harris-laplace				×
SUSAN				
FAST				
MSER	×	×		
IBR	×	×	×	
Kadir	×	×	×	×
EBR	×	×	×	×
PCBR				×
Beaudet				
Kitchen1982				
Hessien- Laplace				×
SIFT		×		×
SURF				×
CSS	×	×	×	×
MFC				×

DETECTOR COMPLEMENTARITY

Image

Harris

Beaudet

Multiples points of interest

2D/3D POINT MATCHING

CONTEXT: FRENCH REGIONAL PROJECT, MOBVILLE

Collaborative application for taking into account geolocalised visual alert of citizens

FRENCH REGIONAL PROJECT, MOBVILLE

Object recognition based on 2D images and 3D models

Objectives

- 1. Transform 2D and 3D data in order to obtain comparable data
- 2. Match 2D and 3D data

To be robust to texture and lighting

Depth map

1124

focus/defocus principle

Existing approaches

- In 2D: Harris, SIFT, Scale Invariant Feature Transform
- In 3D: generalization of Harris, SIFT or adapted to 3D modelling
- between 2D and 3D: use of depth images or rendering images, based on learning
- Proposition : detector based on geometric aspects to be adapted both to 2D and 3D

Multi-scale curviness saliency

Motivation

- ▶ To be robust to scale transform: multiple scale, like SIFT
- To use geometry: curvature

Notation

Image as the regular surface given by the graph of its intensity function \mathcal{I} in x and y:

$$f(x,y) = (x,y,\mathcal{I}(x,y))$$

■ Assumption *I* twice differentiable

Definition Principal curvatures $\kappa_1(x_p, y_p)$ and $\kappa_2(x_p, y_p)$ of a point $p = f(x_p, y_p)$ are the eigenvalues of the Hessian matrix of \mathcal{I} at (x_p, y_p) :

$$H = \begin{pmatrix} \mathcal{I}_{xx} & \mathcal{I}_{xy} \\ \mathcal{I}_{xy} & \mathcal{I}_{yy} \end{pmatrix}$$
(2)

where \mathcal{I}_{xx} , \mathcal{I}_{xy} , \mathcal{I}_{yy} , the second-order partial derivatives

Analysis of this matrix

- Positive determinant: local mimimum, corner, point of interest
- Negative determinant: saddle point
- Near zero: flat regions

2D/3D MATCHING FOR ANALYSIS OF URBAN SCENES

- An other way to express the same idea: curvature tensor
- Notations Two eigenvalues λ₁ and λ₂ and corresponding eigenvectors e₁ and e₂ of H, assuming λ₁ > λ₂
- Assumption H is not singular
- Definition a conic centered at the origin with principal axis directions e₁ and e₂:

$$(x,y) \operatorname{H}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = 1$$

Analysis of this conic

- if $\lambda_1 \lambda_2 > 0$: ellipse
- if $\lambda_1 \lambda_2 < 0$: hyperbola
- The shape of the conic indicates the structure

2D/3D MATCHING FOR ANALYSIS OF URBAN SCENES

- An other way to express the same idea: curvature tensor
- Notations Two eigenvalues λ₁ and λ₂ and corresponding eigenvectors e₁ and e₂ of H, assuming λ₁ > λ₂
- Assumption H is not singular
- Definition a conic centered at the origin with principal axis directions e₁ and e₂:

$$(x,y) \operatorname{H}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = 1$$

Analysis of this conic

- if $\lambda_1 \lambda_2 > 0$: ellipse
- if $\lambda_1 \lambda_2 < 0$: hyperbola
- The shape of the conic indicates the structure

Curviness Saliency is defined by:

$$\mathsf{CS} = \lambda_1 - \lambda_2 \tag{3}$$

2D/3D matching: Curvilinear Saliency (CS) [Rashwan 19]

Definition

$$\mathsf{CS}(\mathbf{X},\mathbf{y}) = \kappa_1(\mathbf{X},\mathbf{y}) - \kappa_2(\mathbf{X},\mathbf{y})$$

- \blacksquare κ_1 and κ_2 are principal curvatures
- Points of interest belong to elongated surface elements
- The higher CS, the higher the probability to be a point of interest

Multiscale and focus

- Mutliscale analysis
- Focus curve concept: estimation of the scale of blur

2D/3D MATCHING: CONTRIBUTION [RASHWAN 19]

Multi-scale curviness saliency: illustration Use of the detection at different scales

Image

Scale 1

Scale2

MCS

2D/3D MATCHING FOR ANALYSIS OF URBAN SCENES

Visual results

2D/3D MATCHING: RESULTS

PASCAL3D+ dataset Repeatability between 2D/3D

2D/3D MATCHING: RESULTS

PASCAL3D+ dataset THrre visual results for pose estimation

PASCAL3D+ dataset

Comparison with a CNN model

Models	mean Acc	mean MedErr
Render [Su 15]	0.82	13.6
ONet [Tulsiani 15]	0.81	11.7
Our Model with MFC	0.80	09.5

■ Acc: pose estimation accuracy (the higher the better)

■ *MedErr*: viewpoint error (the smaller the better)

Contributions

- Proposition of an approach for 2D/3D matching
- Methodology for validating the repeatability between 2D and 3D data

Perspectives

- Mobville project: detection of changes/problems
- Application of this concept in other works:
 - [Abdulwahab 19]
 - [Bakkay 18]
 - [Pelissier-Combescure 23]
- Experiment other 2D/3D common representation [Grabner 19b]
- Experiment other tools for focal length estimation [Grabner 19a]

MULTI-VIDEO ANALYSIS

EUROPEAN PROJECT HORIZON 2020 VICTORIA

15 collaborators with complementary competences: audio, vidéos de synthèse, métadata...
CONTEXT

- Various and different image data: cameras, smartphone, videos, images
- How can we use this redundant data to extract significant information?
 - Watching all the data is too long and expensive
 - Methods needed to analyse automatically or help analysis

CONTEXT

- Various and different image data: cameras, smartphone, videos, images
- How can we use this redundant data to extract significant information?
 - Watching all the data is too long and expensive
 - Methods needed to analyse automatically or help analysis

Needs for investigators

- Naviguate efficiently inside a video collection
- From one current video:
 - 1. Which videos allow us to view the same elements but from different angles?
 - 2. Which video offers the best view of an element of interest?

Videos from multiple devices

Which videos in a collection allow to better visualise a query trajectory?

a list of videos ranked in descending order of relevance
 the reformulated trajectory for each video

Videos from multiple devices

How to help a user to navigate through a video collection in order to extract relevant information?

MULTI-VIDEO ANALYSIS: STATE OF THE ART

Existing works

- Re-identification [Cho 19]
- Camera network analysis based on activity profile [Loy 09]
- Homographies between ground planes

MULTI-VIDEO ANALYSIS: STATE OF THE ART

Existing works

- Re-identification [Cho 19]
- Camera network analysis based on activity profile [Loy 09]
- Homographies between ground planes

In this complex video configurations, tools unuseful!

Multi-video analysis: state of the art

Existing works

- Re-identification [Cho 19]
- Camera network analysis based on activity profile [Loy 09]
- Homographies between ground planes

In this complex video configurations, tools unuseful!

Assumptions

- Videos are static and synchronised
- Previous detections based on [Redmon 18] or [He 20]

Two regions extracted from two different cameras systematically and simultaneously occupied or unoccupied are matching regions

	-		
- 1	•	I	

PROPOSED ALGORITHM

ACTIVITY FUNCTION

For each cell pair $(c_i^{V_1}, c_i^{V_2})$, correlation score by category ω :

$$\mathcal{C}_{\omega}(\mathsf{c}_{\mathbf{i}}^{\mathsf{V}_{1}},\mathsf{c}_{\mathbf{i}'}^{\mathsf{V}_{2}}) = \mathsf{corr}(a_{\mathbf{i}}^{\mathsf{V}_{1},\omega},a_{\mathbf{i}'}^{\mathsf{V}_{2},\omega})$$

Reformulation score

$$\underset{(\mathbf{i'}_{1},...,\mathbf{i'}_{M})}{\operatorname{argmax}} \frac{\frac{1}{M} \sum_{k=1}^{M} \mathcal{C}_{\omega}(c_{\mathbf{i}_{k}}^{V_{1}}, c_{\mathbf{i'}_{k}}^{V_{2}})}{1 + \sum_{k=1}^{M-1} \max(0, ||\mathbf{i'}_{k} - \mathbf{i'}_{k+1}|| - 1)}$$

- (**i**₁, ..., **i**_M) request cell sequence
- (i'₁, ..., i'_M) reformulated cell sequence
- $\square C_{\omega}(c_{i_{h}}^{V_{1}}, c_{i'_{h}}^{V_{2}})$ correspondance score

Hypothesis

Correlation between reformulated trajectory length and video interest

Visibility score

Reformulation score

\times length of the reformulated trajectory

= Ranking of the video based on decreasing visibility score

TOULOUSE CAMPUS DATASET (TOCADA)

25 cameras synchronised + a scenario

Manual annotations with bounding boxes

TOULOUSE CAMPUS DATASET (TOCADA)

RELATION GRAPH

(a) Video Collection (b) Links between the videos

REGION STORY

- R: a region
- T: Time step number
- S_R^{o→i}: stories at each studied time step τ_o,...,τ_i
- **S** $_{R}^{j}$: story at time step τ_{j}
- S_R: Stories of video

MULTI-RESOLUTION AND MULTI-TEMPORAL STORY

DISTANCE BETWEEN TWO STORIES

- \blacksquare S_R et S_{R'}: two stories
- O, O': two objects in two stories
- *p_i*: one attribute (person pose, car model)
- **d** $_{p_i}$: distance relative to p_i
- ω_{p_i} : weight of p_i

$$\delta(\mathbf{0},\mathbf{0}') = 1 - \frac{\sum_{p_i} \omega_{p_i} d_{p_i}(\mathbf{0},\mathbf{0}')}{\sum_{p_i} \omega_{p_i}}$$

(<u>4</u>)

■ $C(S_R, S_{R'})$: Object number such as it exists at least one object O' in its spatial neighbourhoud such as $\delta(O, O') \leq \sigma_{dissimilarity}$

$$d(S_{R}, S_{R'}) = 1 - \frac{C(S_{R}, S_{R'}) + C(S_{R'}, S_{R})}{|S_{R}| + |S_{R'}|}$$
(5)

DISTANCE BETWEEN TWO STORIES: ILLUSTRATION

$$d(S_R, S_{R'}) = 0.809$$

(a)
$$s = 1$$

 $d(S_R, S_{R'}) = 0.573$ °----

$$d(S_R, S_{R'}) = 0.992$$

(b)
$$s = 2$$

 $d(S_R, S_{R'}) = 0.183 \ ^{\circ} - - 1$

(c) s = 2

(d) s = 3

ALGORITHM

1 Function relationship (S^{V_1}, S^{V_2}) **Input** : Two stories at different scales S^{V_1} and S^{V_2} **Output:** Relationship between V_1 and V_2 2 match = [] 3 candidate = { $(V_1, V_2, 1)$ } **4 while** *candidate* $\neq \emptyset$ **do** $c = candidate[0] = (R_1, R_2, scale)$ 5 if $d(S_{R_1}, S_{R_2}) \leq \sigma_{accent}^s$ then 6 match = match $\cup \{(\hat{\mathbf{R}}_1, R_2)\}$ 7 else 8 if $d(S_{R_1}, S_{R_2}) \leq \sigma_{reject}^s$ then 9 add all tuples $(r_1, r_2, \text{scale}+1)$ where 10 $r_1 \in R_1$ and $r_2 \in R_2$ to candidate else 11 null 12 end 13 end 14 delete candidates[0] 15 16 end

- *V_i*: region relative to the whole image
- match: set of matched videos
- candidate: set of triplets (two matched regions, one scale)
- scale: current scale
- c: first candidate studied

RESULTS

• • •

RESULTS

• • •

RESULTS

• • •

Story concept

Simultaneous occurrences of elements in the same category indicate an overlap between videos

MULTI-VIDEO ANALYSIS: RESULTS

Contributions

- Reformulation of trajectory
- Ranking of videos based on interest
- Proposition of the story concept
- Graph of links between video
- Without 3D reconstruction and re-identification

MULTI-VIDEO ANALYSIS: PERSPECTIVES

Multiple unsynchronised dynamic and static videos with or without overlap

- 1. Dynamic video processing
- 2. Unsynchronised video processing
- 3. Event detection processing
- 4. Links between videos without overlap but with a dependency link
- 5. Taking into account the background scene

THANK YOU FOR YOUR ATTENTION ! QUESTIONS ?

REFERENCES

S. Abdulwahab, H. Rashwan, J. Cristiano, S. Chambon and D. Puig. *Effective 2D/3D Registration using Curvilinear Saliency Features and Multi-Class SVM*.

In International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISAPP, pages 354–361, 2019.

- R. AMHAZ, S. CHAMBON, J. IDIER AND V. BALTAZART. AUTOMATIC CRACK DETECTION ON TWO-DIMENSIONAL PAVEMENT IMAGES: AN ALGORITHM BASED ON MINIMAL PATH SELECTION. IEEE Transactions on Intelligent Transportation Systems, TITS, 17(10):2718–2729, 2016.
- M. C. BAKKAY, S. CHAMBON, C. LUBAT AND S. N. BARSOTTI.
 AUTOMATIC DETECTION OF INDIVIDUAL AND TOUCHING MOTHS FROM TRAP IMAGES BY COMBINING CONTOUR-BASED AND REGION-BASED SEGMENTATION. IET Computer Vision, 12(2):138–145, 2018.
- M.-A. BAUDA, S. CHAMBON, P. GURDJOS AND V. CHARVILLAT.
 GEOMETRY-BASED SUPERPIXEL SEGMENTATION INTRODUCTION OF PLANAR HYPOTHESIS FOR SUPERPIXEL CONSTRUCTION.
 In International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISAPP, pages 227–232, 2015.