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Part | : LIDAR Localisation



Terminology

LiDAR : Light Detection And Ranging
SLAM : Simultaneous Localization And Mapping

Occupancy Grid Map Built Using Lidar SLAM
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LIDAR sensors and their evolution

® |mproved performance and lower prices

sIiCK ‘

- |

SICK LMS221 Velodyne HDL64 Hesai XT32
Weight 9kg Weight 12kg Weight 1kg
14k pts/s 1,3M pts/s 640k pts/s

~ 4-5 cm accuracy ~ 5-10 cm accuracy ~ 2 cm accuracy

3k euros in 2005 120k euros in 2010 4k euros in 2022



Objectives of LIDAR SLAM

® 2D sensors with 2D world moving towards a 3D world with 3D sensors

SLAM LIDAR 2D SLAM LIiDAR 3D
Flat world Non flat world
3 degrees of freedom 6 degrees freedom



Architecture of a LIDAR SLAM
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Iterative Closest Point (ICP)

® Besl and McKay article from 1992
® Based purely on geometry

® Method :
o  Two point clouds: one fixed and the other moving

o Two steps at each iteration:
m Nearest point neighborhood search
m Estimation of the transformation that minimizes the

distance
® Disadvantage: need good initialization hltoms=1
-> Not too problematic for SLAM LiDAR ReckICP aigned pan coud

Besl, P. J., McKay N.D., "A Method for Registration of 3-D Shapes", T-PAMI, 1992



Improvements since 1992

® |[nitialization
o Constant Velocity Model
© Use another sensor: IMU
® [ast neighborhood search
o Projective ICP

o Subsampling Tracking from dense model
. MC;p g/'t?l'j’;tl:?gt”re (note extreme camera motion and
o Voxels motion blur in input image)
Surfels
Mesh

Implicit representation
Neural representation

O O O O

Two examples of recent LIDAR SLAM:
o KISS-ICP
o CT-ICP

Izadi et al, "KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera"”, ACM symposium on User
interface software and technology, 2011.



KISS-ICP (2023)

® KISS-ICP: Keep It Small and Simple ICP
University of Bonn
® Code available on Github: https://github.com/PRBonn/kiss-icp

® Map: a point cloud . S

inside a sparse voxel grid - 3 LIS -
® Point-to-point ICP b ‘ |
® 1 pose per scan (6 degrees of freedom) g,;

_co Yl
Solid-state handheld

Vizzo et al, "KISS-ICP: In Defense of Point-to-Point ICP - Simple, Accurate, and Robust Registration If Done the Right Way", RA-L,
2023.


https://github.com/PRBonn/kiss-icp

CT-ICP (2022)

® CT-ICP: Continuous-Time ICP
Mines Paris — PSL with Kitware
® Github: https://github.com/jedeschaud/ct icp

® Map: a point cloud inside a sparse voxel grid
Point-to-plane ICP
® 2 poses per scan (12 degrees of freedom)

TU Scan | Tl Scan 2 2 Scan 3
Al A

Two-Pose CONTINUITY DISCONTINUITY
Estimated Per Scan Elastic Scan-Matching  Correction of errors

Dellenbach et al, "CT-ICP: Real-time Elastic LIDAR Odometry with Loop Closure", ICRA, 2022.


https://github.com/jedeschaud/ct_icp

CT-ICP (2022)

® (Qualitative results on NCLT Dataset:
NCLT Dataset : The University of Michigan North Campus Long-Term Vision and LIDAR Dataset

NCLT 2012-01-08
Speed x3

‘.

Dellenbach et al, "CT-ICP: Real-time Elastic LIDAR Odometry with Loop Closure", ICRA, 2022.



SLAM with neural networks

® Method DeepLO:

LiDAR Frames

Vertex Net. Point Uncertainty

e | ——

Normal Estimation PoseNet .\"
T e _’{/_,«-IHDH_’ Rel. Pose [t, q]

Forward

..................

A

Unsupervised Loss

Cho et al, "Unsupervised Geometry-Aware Deep LIDAR Odometry", ICRA, 2020



Geometric SLAM vs Deep SLAM

® Study and comparison:

| 00-08* | 09-10 - Ground Tuth
£0. 5 - City

PoseNet (ICP loss) 2.24 7.65 §0.050 | S
PoseNet (Weighted ICP loss) 1.49 7.19 Mils bj//b\ i
NI + P-F2F 40.1 30.4 el 20 40 60 80 100 km/H
CV + P-F2F 1.46 1.7
EI + P-F2F 147 I9 0100 —r
NI + Kd-F2F 24.18 14.04 ‘50'075 sElhn e
CV + Kd-F2F 1.41 1.84 e
EI + Kd-F2F 1.41 1.87 he

O'OOOO 20 40 60 80 100 km/H

Dellenbach et al, "What’s in My LIDAR Odometry Toolbox?", IROS, 2021



Evaluation: HILTI SLAM Challenge

® Datasets and challenges organised by HILTI (company in construction)
® SLAM in difficult environments with real conditions (mainly construction sites)

® 3 challenges:
o IROS2021 (October 2021)
o ICRA2022 (May 2022)
o ICRA2023 (May 2023)

® Sensors in session 2022
o Cameras Sevensense Alphasense
O LIDAR Hesai PandarXT-32
o IMU Bosch BMI0O85

Zhang et al, "Hilti-Oxford Dataset: A Millimeter-Accurate Benchmark for Simultaneous Localization and Mapping”, RA-L, 2023.



HILTI SLAM Challenge 2022

® 16 sequences (between 2min et 18min)
® Quantification of the quality of SLAM LIiDAR
o  Topographic quality laser surveys
O 95% of positionning scans with uncertainty less than 3mm




HILTI SLAM Challenge 2022

® Sequence « Sheldonian Theatre » inside Oxford University (~ 6min)
® Considered the most difficult of the 2022 Challenge




HILTI SLAM Challenge 2022

® Sequence « Sheldonian Theatre » inside Oxford University (20s sample)




HILTI SLAM Challenge 2022

® Results:

O 42 submissions from academic and industrials groups
O SLAM LiDAR more accurate than SLAM based on cameras
O IMU essential to manage rapid movements

O Quality higher than organizations’ expectations -> modification of the points system

Lead Organization Algorithm Sensors Used Odometry SLAM Same Results
: ’ Lidar IMU Cam. (#) | Type Real-Time | Global BA Causal LC | Params | ATE Score
1 CSIRO Wildcat SLAM [15] 4 v SW Opt. v v X v v 2.07 563.8
2 Vision & Robotics MC2SLAM [17] v v SWOpt. vV v X v v 3.94 4438
3 HKU FastLIO2[18], BALM [19] v v Filter 4 v - v - 5.94 400.4
4 KAIST Based on [18], [20] v v Filter - v X v - 19.02 317.5
5 Beihang Uni. Based on [18], [21] v v v (2) Filter v X v X X 22.59 311.6
6  Luxembourg Uni. Based on [18], [22 v v V(1) Filter v X v X v 20.49 303.8
7  MINES ParisTech CT-ICP [23] v v Opt. v X v v - 7.72% 2728
8 AIST VITAMIN-E [24], [25] v 4 v (3) SW Opt. vV X v X v 16.16 260.5
9  HKUST & Georgia Tech  Based on [18], [26] v v v (5) Filter v v X v v 47.50 257.6
10 KTH & NTU VIRAL SLAM [27] v v SW Opt. X X v X v 6.90 251.9

Vision-only Results

1 TUM OKVIS2.0 [16] v v/(5) SWOpt. v v X v/ v/ 25.36 325
2 Stuttgart Uni. & TUM Based on [28] v v (4) SW Opt. X X v X X 42.04 222




HILTI SLAM Challenge 2022

® Results: Wildcat SLAM with 4cm error on average on sequence « Sheldonian Theatre »




Application: mapping of cities

® L[ 3D2 prototype at Centre for Robotics at Mines Paris - PSL




Application: mapping of campus

® Handheld system Rock Robotic R3 Pro

GIFRUN.CO

https://cloud.rockrobotic.com/share/463abbf8-5ee6-4f5¢c-81c5-6f6154cca039



https://cloud.rockrobotic.com/share/463abbf8-5ee6-4f5c-81c5-6f6154cca039

Part Il : LIDAR Perception



Tasks for LIDAR-based Perception

® Semantic Segmentation KITT! 30 OBJECT DETECTION using PV-RCNN
® Object Detection

® Instance Segmentation
® Panoptic Segmentation

® Tracking

GIFRUN.CO!I



The goal of LIDAR Semantic Segmentation

® Predict a class for each 3D point

T T

g ~7m K" @
. \ '\

This is how the new, post-processed scans look like individually.




How to do deep learning on point cloud?

® Projection on images
® Convolution on a sparse grid of voxels
® Convolution on a point cloud




Projection on images

® Project on cameras:
O Random view, LIDAR sensor view, bird's-eye view
O  Perspective, parallel, cylindrical projection...
O  Keeping depth, accumulation, RGB data...

® Use classic 2D convolutional neural networks

ﬂ '.Lﬂi _
ﬁ ) - - bathtubps
; W bed o
} f _ chair
! ¢ ’ - desk[—
b =] - 2 Y | A View J dressero
r ) ,D ' S ‘ pooling
B 0 I{»
\I'ig" |
/ " ' toilet—
| - -
5
3D shape model
rendered with 2D rendered our multi-view CNN architecture output class

different virtual cameras images predictions



Projection on images

® RangeNet++: LIDAR Semantic Segmentation using range images
O  Loss of information in the projection

Milioto et al, "RangeNet++: Fast and Accurate LIDAR Semantic Segmentation”, IROS, 2019.



Convolution on a sparse grid of voxels

® Point cloud transformed into an occupancy grid (voxels)

Voxel Grid
3D Point cloud 32 x 32 x32x1 3D - CNN

Car

® Replace dense operations with sparse operations
O Example SRU-Net as Sparse Residual U-Net




Convolution on a point cloud

® Point cloud as support for features inside the network

Convolution Pooling Convolution Global Pooling

Fully ) Softmax
connected Prediction

More info on Less points More info on
each point each point



Convolution on a point cloud

® KPConv: point-based convolutions
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Hard alignment of the weights based on input pixel positions Soft alignment of the weights based on the correlation between input points and kernel points

Thomas et al, "KPConv: Flexible and Deformable Convolution for Point Clouds", ICCV, 2019.



Convolution on a point cloud

® KPConv results

Thomas et al, "KPConv: Flexible and Deformable Convolution for Point Clouds", ICCV, 2019.



Convolution on a point cloud

e KPConv results on Paris-Lille-3D:
O 82.0% mloU (jaccard index averaged by class)
O  95.3% overall accuracy (on all points)

Thomas et al, "KPConv: Flexible and Deformable Convolution for Point Clouds", ICCV, 2019.



LIDAR-based Perception in autonomous driving

® 3D neural networks obtain good results on datasets in autonomous driving
O 60 - 70 mloU on SemanticKITTI
O 70 - 80 mloU on nuScenes

® Two main issues:
O  3d neural networks like SRU-Net or KPConv are slow
O  Not robust: a model trained on one dataset does not perform well on another dataset

® Dealing with speed:
O Decrease the size of the network
O  Knowledge distillation
O  Apply 3d neural networks on some parts of the scene (-> 3DLabelProp)

® Dealing with robustness
O Domain Generalization for LIDAR Semantic Segmentation



What is Domain Generalization?

® Definition:
O “The idea of Domain Generalization is to learn from one or multiple training domains, to
extract a domain-agnostic model which can be applied to an unseen domain”
(Definition taken from paperswithcode.com)

® Main domain shifts in LIDAR perception for autonomous driving
O  Scene shifts
O  Appearance shifts
O  Sensor shifts



What is Domain Generalization?

® Example of datasets in autonomous driving with some domain shifts

PandaSet 1 =

Hesai Pandar64 StE
SemanticKITTI nuScenes ‘i O SemanticPOSS
(Velodyne HDL64) (Velodyne HDL32) \\ (Hesai Pandora-40)

PandaSet
(Hesai Solid-State Pandar-150)



Sensor-agnostic LIDAR Semantic Segmentation

Current frame

3DLabelProp

Clusterization and Densification

Current frame after propagation.
In black non-propagated points

Example of one cluster.
In current frame Completed

KPConv

]
(]
(]
D inference
L]
L1

\é"
— i e

Accumulated point cloud and current frame (in black) Predicted cluster

Final prediction. Label on the top, errors on the bottom

Sanchez et al, "Domain generalization of 3D semantic segmentation in autonomous driving", ICCV, 2023.



Sensor-agnostic LIDAR Semantic Segmentation

® 3DLabelProp quantitative results

NS SK SHK32 P64 PFF 1S P
Method Input type m]oUﬁN g mloU £ N SAS K mloU N SHS K m[oUﬁﬁrsﬁ ps '"lOUENl«;m ps mloU. NSAS P
KPConv | 30)] Point-based 63.1 449 50.6 25.0 16.9 60.7
SPVCNN [25] Voxel & point-based 67.2 494 53.2 43.7 11.1 64.8
C3D [47] Cylindrical voxel-based 70.2 31.7 46.1 15.8 4.7 42.8
3DLabelProp (Ours) | Point-based & 4D || 71.0 H 60.5 ] 62.5 H 65.4 | 66.7 || 64.3

Generalization results when trained on nuScenes (NS) and tests on nuScenes (NS), SemanticKITTI (SK), SemanticKITTI32
(SK32), Panda64 (P64), PandaFF (PFF), and SemanticPOSS (PS)



Sensor-agnostic LIDAR Semantic Segmentation

® 3DLabelProp speed

mloUZX | mloUZE mloUY ® | FPs
SK SKNSP SKNNS
KPConv 59.9 33.1 47.6 02
w/ reflectivity
KPConv 58.3 39.1 46.7 0.2
KPConv 53.0 472 442 0.05
multiframe
I Sbeep 60.8 50.4 444 1.0
(Ours) ’ i ’ ’

Comparison of 3DLabelProp method with KPConv singe-frame and KPConv multi-frame



Sensor-agnostic LIDAR Semantic Segmentation

® 3DLabelProp qualitative results

\Z TRy
% ¥ TR
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3 A~
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# f
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e
Ground Truth KPConv SPVCNN 3DLabelProp (Ours)

Qualitative results when trained on SemanticKITTI and tested on Panda64 (top row) and PandaFF (bottom row)



Questions ?
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