

## Intelligent Control Supervisor for Autonomous Vehicles

Presenter: Dr. Hussam ATOUI (Valeo)

Thematic School SAUTOS: Safe AUTOnomous Systems

Université Paris-Saclay, Orsay, France

23-27 October 2023



GRADUATE SCHOOL Engineering and Systems Sciences

UNIVERSITE PARIS-SACLAY





### **Presenter: Hussam ATOUI**

Welcome

- **Current position:** Automated Driving Systems Software Engineer at Valeo (France).
- Integrated Valeo in November 2022
- Received the PhD in October 2022
- Previous work experiences: RENAULT (2019 2022), Gipsa-lab (2019-2022)
- **Academic background:** PhD in Robotics and Control Systems, Mechatronics Engineering
- **Specialities:** Autonomous Driving, Automatic Control, Robotics, Optimization, Machine Learning, Reinforcement Learning.



Welcome

gipsa-lab

PhD Thesis: Hussam ATOUI () Renault

#### • Gipsa-lab (Grenoble):

• Supervised by Olivier Sename

#### • Technocentre RENAULT (Guyancourt):

- Supervised by Vicente Milanes
- using ZOE experimental platform





#### **Automated Driving Software Engineer**





# Outline



#### Introduction



**About LPV** 



#### **About LPV-YK**

4

**LPV-YK Control Structures** 



**Application to Autonomous Vehicles** 



VALEO RESERVED

# Outline





About LPV



- About LPV-YK
- **4** LPV-YK Control Structures
- 5
- **Application to Autonomous Vehicles**



Deliver collaborative and cutting edge innovations to Valeo CDV





### Introduction

**RENAULT** history in automated vehicles



#### Why to improve the existing lateral control?

- It needs control tuning for each kind of RENAULT vehicles
- > It is limited to low speeds (< 50 Km/h)
- It requires time to re-tune the controller by the engineers



### Driving automation divided into 6 levels<sup>1</sup>

• Automated Driving System (ADS) perform the entire Dynamic Driving Task: levels 1-5



Degree of participation of automation in the driving-related tasks

<sup>1</sup>SAE International J3016\_201806 - Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, 2018



### Introduction

Functional components of an automated vehicle



Valeo

- **Longitudinal Control:** it is responsible to regulate the vehicle speed such as Adaptive Cruise Control (ACC) or vehicle following. It controls the throttle and brake actuators.
- Lateral Control: it is responsible for vehicle manoeuvring such as lane-keeping, lane-changing, collision avoidance, parking, etc. It controls the steering actuator.









# Outline



#### Introduction



#### About LPV-YK

LPV-YK Control Structures



4

-3

**Application to Autonomous Vehicles** 



About LPV LPV System

$$G(\rho):\begin{cases} \dot{x}(t) = A(\rho(t)) x(t) + B_1(\rho(t)) w(t) + B_2(\rho(t)) u(t) \\ z(t) = C_1(\rho(t)) x(t) + D_{11}(\rho(t)) w(t) + D_{12}(\rho(t)) u(t) \\ y(t) = C_2(\rho(t)) x(t) + D_{21}(\rho(t)) w(t) + D_{22}(\rho(t)) u(t) \end{cases}$$



- $\rho(.)$  is assumed to be known or measurable
- The parameters  $\rho$  are always assumed to be bounded in a compact set  $\mathcal P$  defined by their extremums

$$\rho_i(t) \in \left[\underline{\rho_i}, \overline{\rho_i}\right], \quad \forall i$$

- The system matrices are continuous on  $\mathcal{P}$ .
- It is required sometimes that

$$\dot{\rho}_i(t) \in \left[\underline{\nu_i}, \overline{\nu_i}\right], \quad \forall i$$

• The parameters can be endogenous if they are state-dependent  $\rho = \rho(x(t), t)$ , this leads to a quasi-LPV system

### About LPV

LPV lateral bicycle model (Steering Control)



•  $C_r, C_f, l_r, l_f, m, I$  are known constants



### **About LPV**

Generalized LPV lateral model for  $\mathcal{H}^{\infty}$  control

steady-state tracking

error



noise rejection at high

frequencies

| LPV Control                            | Conditions                                                                          |
|----------------------------------------|-------------------------------------------------------------------------------------|
| Polytopic                              | <ul> <li>Affine parameter-dependency</li> <li>Convex parameter region</li> </ul>    |
| Grid-based                             | <ul><li>General parameter-dependency</li><li>Bounded parameter variations</li></ul> |
| Linear Fractional Transformation (LFT) | Fractional parameter-dependency                                                     |

**Valeo** 



$$\sum_{i=1}^{2^{n_p}} \mu_i(\rho) = 1, \qquad \mu_i \ge 0 \; \forall i$$





The objective is to minimize the  $\mathcal{L}_2$  induced gain from the external input w to the controlled output z. This is achieved by solving the following  $\mathcal{L}_2$  induced minimization problem:

$$||z||_2 \le \gamma_{\infty} ||w||_2$$

and  $\gamma_{\infty} > 0$  to be minimized, represents how much the demanded performance is achieved. If  $\gamma_{\infty} < 1$ , the demanded performance is totally achieved by the controller.







# Outline



#### Introduction



### **About LPV-YK**

**LPV-YK Control Structures** 



3

4

#### **Application to Autonomous Vehicles**

Conclusions 6

#### About LPV-YK LTI-YK case

• SISO LTI-YK definition

$$CL(s) = \frac{G(s)K(s)}{1 + G(s)K(s)},$$

$$Q(s) = \frac{K(s)}{1 + G(s)K(s)},$$

- Coprime factorization
- $G = NM^{-1}$ ,  $K = UV^{-1}$  satisfying the Bezout Identity
- Parameterized controller
- $K(Q) = (U + MQ)(V + NQ)^{-1}$
- Proved theorem in the literature

If K(s) stabilizes G(s), then Q(s) is stable and K(Q) stabilizes G(s) where M, N and  $U, V \in RH_{\infty}$  are the coprime factorizations of G and K respectively.





### About LPV-YK

LPV-YK parameterization

• The plant and the controllers can be factorized (from left and right) as a product of stable transfer function matrices with stable inverse, as follows:

$$G(\rho) = N(\rho)M^{-1}(\rho) = \widetilde{M}^{-1}(\rho)\widetilde{N}(\rho)$$
  

$$K(\rho) = U(\rho)V^{-1}(\rho) = \widetilde{V}^{-1}(\rho)\widetilde{U}(\rho)$$

• Satisfying the following *Bezout Identity*:

$$\begin{bmatrix} \tilde{V}(\rho) & -\tilde{U}(\rho) \\ -\tilde{N}(\rho) & \tilde{M}(\rho) \end{bmatrix} \begin{bmatrix} M(\rho) & U(\rho) \\ N(\rho) & V(\rho) \end{bmatrix} = \begin{bmatrix} M(\rho) & U(\rho) \\ N(\rho) & V(\rho) \end{bmatrix} \begin{bmatrix} \tilde{V}(\rho) & -\tilde{U}(\rho) \\ -\tilde{N}(\rho) & \tilde{M}(\rho) \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

LPV-YK Parameterization



About LPV-YK LPV-YK parameterization

#### **Multiple LPV-YK Parameterizations**

Assume multiple LPV controllers  $K_i(\rho) = U_i(\rho)V_i^{-1}(\rho) = \tilde{V}_i^{-1}(\rho)\tilde{U}_i(\rho)$  that can be parameterized with respect to a chosen nominal LPV controller  $K_0(\rho) = U_0(\rho)V_0^{-1}(\rho) = \tilde{V}_0^{-1}(\rho)\tilde{U}_0(\rho)$  as:

$$\widetilde{K}_{i}(\rho) = K(Q_{i}) = (U_{0}(\rho) + M(\rho)Q_{i}(\rho))(V_{0}(\rho) + N(\rho)Q_{i}(\rho))^{-1}$$
$$= (\widetilde{V}_{0}(\rho) + Q_{i}(\rho)\widetilde{N}(\rho))^{-1}(\widetilde{U}_{0}(\rho) + Q_{i}(\rho)\widetilde{M}(\rho))$$
$$\equiv U_{i}(\rho)V_{i}^{-1}(\rho) = K_{i}(\rho)$$

#### Interpolation of multiple LPV-YK Controllers

$$\tilde{K}(\rho,\gamma) = K(\tilde{Q}) = \left(U_0(\rho) + M(\rho)\tilde{Q}(\rho,\gamma)\right) \left(V_0(\rho) + N(\rho)\tilde{Q}(\rho,\gamma)\right)^{-1}$$
$$= K(\tilde{Q}) = \left(\tilde{V}_0(\rho) + \tilde{Q}(\rho,\gamma)\tilde{N}(\rho)\right)^{-1} \left(\tilde{U}_0(\rho) + \tilde{Q}(\rho,\gamma)\tilde{M}(\rho)\right)$$

Where  $\tilde{Q}(\rho, \gamma) = \sum_{i=1}^{\zeta} \gamma_i Q_i(\rho)$ 

- if  $\gamma_i = 0 \ \forall i, \tilde{K}(\rho, \gamma) \equiv K_0(\rho)$
- if  $\gamma_i = 1$  for  $i = c \in \mathbb{I}[1, \zeta]$  and  $\gamma_i = 0 \ \forall i \neq c, \tilde{K}(\rho, \gamma) \equiv K_c(\rho)$
- else, the performance of  $\tilde{K}(\rho, \gamma)$  is interpolated among  $K_i(\rho)$  according to the chosen  $\gamma_i$ 's.









## Outline



#### Introduction



About LPV



#### About LPV-YK



#### LPV-YK Control Structures



**Application to Autonomous Vehicles** 



**1.** Switching between partitioned parameter regions (e.g. partition vehicle speed region)



**2.** Interpolation of control performances (e.g. multiple lateral control tasks)





1. Partitioned parameter regions

- Design multiple LPV controllers, each one corresponds to a certain parameter region  $\mathcal{P}_i$
- The aim is to maintain a closed-loop robust performance over a wide parameter variations
- Switch between the multiple LPV controllers with smooth transient response at the switching instants





1.1 Grid-based LPV-YK control \*

1. Design multiple LPV controllers  $K_i(\rho), i \in \mathbb{I}[1, N]$ 

All  $K_i(\rho)$  are designed based on the standard grid-based approach with similar performance.

- 2. An overall switching is obtained with switching signal vector  $\gamma(\rho) = [\gamma_1(\rho), ..., \gamma_N(\rho)].$ 
  - Stability Conditions
    - 1. Each  $K_i(\rho)$  must **exponentially** stabilize  $G(\rho)$  over  $\mathcal{P}_i$ .
    - 2. The following LMIs are satisfied:

$$A(\rho)X_{g}(\rho) + X_{g}(\rho)A^{T}(\rho) + \sum_{j=1}^{s} \pm \left\{ \underline{\nu_{j}}, \overline{\nu_{j}} \right\} \frac{\partial X_{g}}{\partial \rho_{j}} + B_{2}W(\rho) + W^{T}(\rho)B_{2}^{T} < 0$$

$$A_{k,0}(\rho)X_{k,0}(\rho) + X_{k,0}(\rho)A_{k,0}^{T}(\rho) + \sum_{j=1}^{s} \pm \left\{ \underline{\nu_{j}}, \overline{\nu_{j}} \right\} \frac{\partial X_{k,0}}{\partial \rho_{j}} + B_{k,0}(\rho)V(\rho) + V^{T}(\rho)B_{k,0}^{T}(\rho) < 0$$

\* [Atoui et al, (2022)] Advanced LPV-YK Control Design with Experimental Validation on Autonomous Vehicles, under revision in Automatica
VALEO RESERVED
VALEO RESERVED



1.2 Partitioned gain-scheduled control \*

1. Design multiple YK-based gain-scheduled controllers  $\widetilde{K}_i(\rho), \ i \in \mathbb{I}[1, N].$ 

Each  $\widetilde{K}_i(\rho)$  is designed by interpolating its corresponding  $K_{ij}$  $(j \in \mathbb{I}[1, 2^{n_p}])$  based on **LTI-YK** concept.

- 2. Create an overall switched LPV-YK controller  $\widetilde{K}_{\sigma}(\rho)$ .
  - Stability Conditions
    - 1.  $G(\rho)$  must have **affine** parameter-dependency.
    - 2. **Only**  $K_0(\rho)$  must **quadratically** stabilize  $G(\rho)$ . The

other  $K_{ij}$  must **stabilize** the local systems  $G_{ij}$ .

3. The following LMIs are satisfied:

$$A(\rho)X_{g} + X_{g} A^{T}(\rho) + B_{2}W(\rho) + W^{T}(\rho)B_{2}^{T} < 0$$
  
$$A_{k,0}(w_{ij})X_{k,ij} + X_{k,ij} A_{k,0}^{T}(w_{ij}) + B_{k,0}(w_{ij})V_{ij} + V_{ij}^{T} B_{k,0}^{T}(w_{ij}) < 0, \qquad \forall w_{ij}$$

\* [Atoui et al, (2022)] Advanced LPV-YK Control Design with Experimental Validation on Autonomous Vehicles, under revision in Automatica
VALEO RESERVED



2023 | 28

2. Multiple closed-loop performances

- Design multiple LPV controllers over the same parameter convex region
- Each LPV controller achieves a specific required closed-loop performance, i.e. rising time, steady-state error, etc.
- Interpolate between the multiple LPV controllers to adapt the system performance according to the situation





2.1 Polytopic-based LPV control interpolation \*

1. Design multiple LPV controllers  $K^{(j)}(\rho), j \in \mathbb{I}[0, \zeta]$ .

All  $K^{(j)}(\rho)$  are designed based on the standard **polytopic** approach.

- 2. An overall interpolation scheme is obtained with  $\gamma = [\gamma_1, ..., \gamma_{\zeta}]$ .
  - Stability Conditions
    - 1.  $G(\rho)$  must have **affine** parameter-dependency.
    - 2. All  $K^{(j)}(\rho)$  must quadratically stabilize  $G(\rho)$ .
    - 3. The following LMIs are satisfied:

$$\begin{split} A(\rho)X_g \,+\, X_g\,A^T(\rho) \,+\, B_2W(\rho) \,+\, W^T(\rho)B_2^T < 0 \\ A_k^{(0)}(\rho)X_k \,+\, X_k\,A_k^{(0)T}(\rho) \,+\, B_k^{(0)}(\rho)V(\rho) \,+\, V^T(\rho)B_k^{(0)T}(\rho) < 0 \end{split}$$





Vale

2.2 YK-based LPV control interpolation \*

- 1. The LPV controllers  $K^{(j)}(\rho), j \in \mathbb{I}[1, \zeta]$  are designed based on YK parameterization.
- Only  $K^{(0)}(\rho)$  is designed based on polytopic approach 2.
- An overall interpolation scheme is obtained with  $\gamma =$ 3.  $[\gamma_1, \ldots, \gamma_{\mathcal{Z}}].$ 
  - **Stability Conditions** 
    - $G(\rho)$  must have affine parameter-dependency.
    - 2. Only  $K^{(0)}(\rho)$  must **quadratically** stabilize  $G(\rho)$ .
    - $K_i^{(j)}$  must stabilize the local LTI systems  $G_i$ .
    - 4. The following LMIs are satisfied:

$$\frac{A(\rho)X_g + X_q A^T(\rho) + B_2 W(\rho) + W^T(\rho)B_2^T < 0}{A_{k,i}^{(0)} X_{k,i} + X_{k,i} A_{k,i}^{(0)T} + B_{k,i}^{(0)} V_i + V_i^T B_{k,i}^{(0)T} < 0, \quad \forall i$$



<sup>\* [</sup>Atoui et al, (2022)] Multi-Variable and Multi-Objective Gain Scheduled Control Based on Youla-Kucera Parameterization: Application to Autonomous Vehicles, under review in International Journal on Robust and Nonlinear Control (IJRNC) VALEO RESERVED

### Summary







# Outline



#### Introduction



. . .

About LPV-YK

LPV-YK Control Structures



6

-3

4

#### **Application to Autonomous Vehicles**

#### **Conclusions**

### **Application to Autonomous Vehicles**

**Experimental Architecture** 

#### **Robotized Renault ZOE**



#### **Platform architecture**





### **Application to Autonomous Vehicles**

Lateral control: closed-loop scheme





### **Application to Autonomous Vehicles**

Satory private test-track





Challenges and Motivation

- 1. Design a controller for vehicle lateral motion achieving comfort at low and high-speed ranges.
  - LPV-YK parameterization facilitates parameter region partitioning and attain robust performance over the whole parameter region.



< 50 km/h





Challenges and Motivation

- 2. Design a multi-objective switching controller that can handle various lateral motion tasks.
  - LPV-YK switching control can handle multiple control objectives under any arbitrary switching signal.



**Global Objectives** 

- Reject noises on steering wheel at high vehicle speed
- Perform control switching with smooth transient response at the switching instants.
- Achieve different lateral control tasks; e.g. lane change, obstacle avoidance, etc.



Challenge 1

- Reject noises on steering wheel at high vehicle speed
- Perform control switching with smooth transient response at the switching instants.
- Achieve different lateral control tasks; e.g. lane change, obstacle avoidance, etc.



#### Autonomous Vehicles Lateral Control Challenge 1





Challenge 1: Grid-based LPV-YK



LPV-Switching: [Bei Lu and Fen Wu, (2004)] Switching LPV control designs using multiple parameter-dependent Lyapunov functions, Automatica 2004



Challenge 1: Polytopic-based LPV-YK



Gain-scheduled LPV-YK: [F. Bianchi and R. Pena, (2010)] Interpolation for gain-scheduled control with guarantees, Automatica 2010



#### Challenge 2

- Reject noises on steering wheel at high vehicle speed
- Perform control switching with smooth transient response at the switching instants.
- Achieve different lateral control tasks; e.g. lane change, obstacle avoidance, etc.





Challenge 2: Interpolation of YK-based LPV controllers (Simulation)



Challenge 2: Interpolation of YK-based LPV controllers (Experiment)



Challenge 2: Interpolation of YK-based LPV controllers (Summary)



| Controller                                     | Value of interpolating vector $\gamma$ | Control objective                                                  | Advantages                                                                                                | Disadvantages                                                        |
|------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| $\tilde{K}(\rho, [0, 0]) \equiv K^{(0)}(\rho)$ | [0,0]                                  | Highly robust                                                      | High noise rejection due to bad environment conditions, sensor faults, etc.                               | Inaccurate tracking performance and conservative                     |
| $\tilde{K}(\rho, [1, 0]) \equiv K^{(1)}(\rho)$ | [1,0]                                  | Smooth tracker                                                     | Good tracking performance<br>with smooth steering                                                         | Oscillatory and cannot perform well<br>at high lateral accelerations |
| $\tilde{K}(\rho, [0, 1]) \equiv K^{(2)}(\rho)$ | [0,1]                                  | Aggressive tracker                                                 | Fast tracking performance and could<br>achieve high lateral accelerations                                 | Too sensitive to noises                                              |
| $	ilde{K}( ho,\gamma)$                         | variant as<br>in Fig. 7d               | Multiple objectives by varying the interpolating vector $\gamma$ . | All the mentioned advantages and even more by choosing the optimal combination of controllers by $\gamma$ | No bad performance is observed                                       |







How to choose an optimal interpolation logic?

Heuristic Rule

• If 
$$\theta_e \le 0.1, \gamma_2(t) = sat(-y_L + 1.4 + 0.1\dot{\delta}, [0,1])$$

• If 
$$\theta_e > 1, \gamma_2(t) = sat(-0.7y_e + 1.4, [0,1])$$

• 
$$\gamma_1(t) = 1 - \gamma_2(t)$$



## Learning-based methods



LPV-YK interpolation based on RL





**RL-based Interpolation: Simulation** 



Valeo





# Outline



#### Introduction



**3** About YK

About LPV-YK



**Application to Autonomous Vehicles** 



### Conclusions

Final words

#### LPV-YK Flexibility

- Ensures stability from its parameterization structure
- ✓ No limitations on the interpolating/switching signals
- ✓ Switched controllers can be designed separately, even with different dynamics and design concepts
- ✓ Achieves smooth transitions at the switching instants
- ✓ It works on real time implementations

#### **LPV-YK Complexities**

- It may reach to a very high order (>22 states)
- > The dynamics of YK parameter Q affect the whole closed-loop performance
- $\succ$  The design of an optimal Q is not solved yet



| Conclusion                                                                                                                                                                                                           | Suggested Extension                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| LPV-YK control switching ensures closed-loop stability:                                                                                                                                                              |                                                                                                                                          |
| <ol> <li>without requiring an instantaneous design of the local<br/>LPV controllers.</li> <li>for any continuous/discontinuous switching signals</li> <li>with smooth state and control input transitions</li> </ol> |                                                                                                                                          |
| The LPV-YK control structures have shown interesting results at high vehicle speed.                                                                                                                                  | A next step can be done by testing them in more complex<br>environments, i.e. friction drop, gust wind, higher lateral<br>accelerations. |
| The multi-objective LPV-YK control structures are needed to handle different driving situations.                                                                                                                     |                                                                                                                                          |
| The RL-based LPV-YK interpolation has achieved better efficiency, and comfort.                                                                                                                                       | Improve the link between the decision-making and the control systems which leads to higher vehicle performance.                          |









SMART TECHNOLOGY FOR SMARTER MOBILITY