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Introduction: Reinforcement Learning

Reinforcement Learning Architecture

Objective Model
/Model-free
l Actions
Agent Environment
gen nonlinear,
(Learns optimal policy) — ] (Unknown),
Feedback Signal

j Reward
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Introduction: Reinforcement Learning

Reinforcement Learning: A

Traditional Control Prespective

Al Prespective : RL

Control

Dynamical
Controller Input u(k) System
Agent Actions a(k) | Environment
T State feedback x(k) Reward

State feedback s(k)
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Introduction: R

X1 = F(xk) + g(xk)u(xx) (1)

X, € Q C R" is the state variable vector

Q being a compact set

u(xx) € U C R™ is the control input vector

® f(x)is C! and x = 0 is an equilibrium state such that
f(0) =0 and g(0) = 0.
Note: u(xk) will be denoted as uy.
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Introduction: Reinft ent Learning
RL: Nonlinear Discrete Time
Safe R .
Safe RL: Nonli

R

RL: Discrete time optimal control

Control law/ Policy

A control policy is a function from state space to control space
m(-) : R" — R™, that defines for every state xx , a control action:

u = 7(xx) (@)

® Such mappings — feedback controllers.

® Example: linear state-variable feedback ux = 7(xx) = —Kxk
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Introduction: Reinf ment Learning
[N Nonllnear Discrete Tlme

Safe RL: Nonline

RL: Discrete time optimal control

Goal directed performance

Cost-to-go is a sum of (discounted) future costs from the current
time k into the infinite horizon future under a prescribed control
law uy = m(xk):

J (Xk7 Uk Z Xna Un (3)

where r(xp, up) is the utility function defined as:
r(Xny Un) = X Qxn + U] R up

® (Q symmetric positive semi-definite matrix Q = umm '?A %
® R is a symmetric positive definite matrix R = R \"
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RL: Discrete time optimal control

Assumption: Stabilizable system

System (1) is stabilizable on the prescribed set Q € R" .

= There is a control policy ul = 7(x) such that closed loop

system xx11 = f(xk) + g(xk)u} is asymptotically stable over Q i.e.
up = (ut(xk), ut(xk11), Ut (xk12), Ut (X0 )) exists that

e that stabilises the system (1)
® associated cost J(xk, ut) is finite.

U denotes the set of all admissible control inputs.

Oumn (AN %
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RL: Nonlinear Discrete Time

RL: Discrete time optimal control

For a given admissible prescribed policy 7(x),
the cost associated is called as it value denoted as

Vi () = J(xi, m(x))
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Introduction: Reinforcement Learning

Objective: Optimal Cost

To find a control policy 7*(xx) that minimizes the infinite horizon
cost function,

V*(x¢) = min r(Xn, Un), Vxk (4)

or, V*(xk) = min > r(xn, m(xn)), Vxk
() n=k

V*(xx) ==> optimal cost or optimal value.
Optimal policy
o0
Optimal control policy: 7*(xx) = argmin > r(xn, 7(xn)), Vxk %
w(-) n=k
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RL: Discrete time optimal control

Cost (given a prescribed

policy ux = m(xk)) Vi (xk) = ngk r(Xn; Un), Vxk

_ Vi (xk) = r(xk, uk) + Vi (xk41)
Bellman Eq/ Nonlinear

Lyapunov Eq (Recursive): H(xk, uk, Vi) = r(xi, ug) + Vi (1) — Vie (31
Hamiltonian:

V*(xk) = min (r(xk, ux) + Vir(xk+1))
Optimal Cost: ucel

Oumn (AN @
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Introduction: Reinft ent Learning
RL: Nonlinear Discrete Time
Safe R .
Safe RL: Nonli

R

RL: Discrete time optimal control

Bellman Principle Bellman, 1957

“An optimal policy has the property that no matter what the
previous decisions (i.e. controls) have been, the remaining
decisions must constitute an optimal policy with regard to the
state resulting from those previous decisions
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RL: Discrete time optimal control

Cost (given a prescribed
policy ux = m(xk))

Bellman Eq/ Nonlinear

Lyapunov Eq (Recursive):

Hamiltonian:
Optimal Cost:
Bellman principle:

Backwards in Time!!
Optimal control (policy):

Vie(xk) = > r(xn, tn), Vxk
n=k

Vie(xk) = r(xi, uk) + Va(xk+1)
H(ka Uk, V7T) = r(Xka Uk) + VW(XkJrl) - VTF(Xk)

V*(Xk) = mirb (r(xk, uk) + Vﬂ-(Xk_H))

uge

V*(xk) = ITGHZI (r(xi, ue) + V*(xk41))

IS U nz LORRAINE

™ (xk) = arg min (r(xx, ux) + umvm( PH)) %
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RL: Discrete time optimal control

Cost (given a prescribed oo
policy ux = m(xk)) Vi (%) = ngk r(Xn, Un), Vxk
_ Vi (xk) = r(xk, uk) + Va(xict1)
Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive): H(xk, tge, Vir) = r(xic, tg) + Vie(xkr1) — Vie(xk)
Hamiltonian:

V*(xx) = min (r(xg, ug) + Vi(Xeg1
Optimal Cost: () uel (r ) (1))

V¥ () = min (r(xe, ue) + V* (k1))

Bellman principle: e

Optimal control (policy):  7*(xx) = arg min (r(xx, Uk) V*(x /”L ))
Only data required!! uk€U Q@ e %
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Introduction
[N

Safe RL

RL: Discrete time optimal control

V() = min  (r(xe k) + V7 (xet1))

u
Bellman principle: LTG'T/ (0 Q@xic + uf R uie + V* (xi41))
(DT Hamilton-
Jacobi-Bellman = min (x{ Qxc + ul R u+ V*(F(x¢) + g(xe) )
Equation) uced

Optimal control
: 7 (xk) = argmin (r(xx, ug) + V*(x
(policy): () L%eu (r(xk, uk) (Xk+1))

() = uf = (—1/2)R1gT () 24 Len)

OxXi41

Oz (AN %
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Cost (given a prescribed
policy U, = 7T(Xk)) VW(Xk) — Z I’(Xn, Un),VXk
n=k
Bellman Eq/ Nonlinear Vi (xi) = r(xe, uk) + Va(xkt1)
Lyapunov Eq (Recursive): _
Optimal Cost: V*(xk) = min (r(xk, uk) + Va(xr1))

o0

V*(Xk) = min (r(xk, uk) + V*(Xk+1))
Bellman principle: ueU

™ (xk) = arg min (r(xx, uk) + V*(xk+1))

Optimal control (policy): U
Oumn (AN @
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DT Policy lteration

Initialization
Select any stabilizing /admissible control policy: m;(x)
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Introduction: Reinforcement Learning

Safe RL

DT Policy lteration

Initialization
Select any stabilizing /admissible control policy: m;(x)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.

Vir1(xk) = r(xie, 7 (xk)) + Viga(xis1) 3 Vj42(0) = 0
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Introduction: Reinforcement Learning

Safe RL

DT Policy lteration

Initialization
Select any stabilizing /admissible control policy: m;(x)

Policy Evaluation
Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.

Vir1(xk) = r(xie, 7 (xk)) + Viga(xis1) 3 Vj42(0) = 0

Policy Improvement
Determine an improved policy

—argmin ({0 w) + Vi)  Omm G @

uelU
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Introduction: Reinforcement Learning

Safe RL

DT Policy lteration

Initialization

7j(xk)

Policy Evaluation

Vi1 (xi) = r(xi mi(xi)) + Vira(xet1)
Policy Improvement

mit1(xk) = arg nzjin (r(xies i) + Vi1 (xu41))
uge

When r(xg, ux) = kaka + u,Z-R Uy,

T2 () = (~1/2)R1Lg T () Ligalike) O (A @

OXpy1
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RL: Nonlinear Discrete Time

DT Policy lteration: Observations

Initial policy must be stabilizing.

Policy Iteration (Howard, 1960; Leake and Liu, 1967) =
® Vipo(x) < Viga(x)

® As j — oo:

* Vi(x) = V*(x)

e 1 =1t

Convergence to optimal cost and thus, optimal control policy.
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DT Policy lteration: Observations

® Vipa(xi) = r(xie, mj(xi)) + Vipr(Xie41): ¥xi € Q
® value of using a given policy starting in all current states
possible.
® Several states = Significant computations!

e Called full backup (Sutton and Barto, 2018)= Massive
computational load

Oumn (AN @
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Safe RL

1ces

DT Policy lteration: Observations

® Vii1(xk) = r(xu, mi(xk)) + Vi1 (k1) Vxk € Q
® value of using a given policy starting in all current states
possible.
® Several states = Significant computations!
e Called full backup (Sutton and Barto, 2018)= Massive
computational load
® Bellman Eq — fixed point equation
® Given admissible policy m;,
Vi (xk) = r(xk, mj(xk)) + V' (xk+1) is a contraction map
* Upon iterated starting from VO(x), V/(xc) — Vj11(xk) as

i — 00.
Oumn (AN @
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ement Learning

RL: Nonlinear Discrete Time
fe RL .

® This strategy = backward in time procedure
® Good for:
® Off-line planning, Offline optimization, Offline control
synthesis.
® NOT online leanring (optimla control synthesis using real time
data measured along system trajectories.
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® This strategy = backward in time procedure
® Good for:

® Off-line planning, Offline optimization, Offline control
synthesis.
® NOT online leanring (optimla control synthesis using real time
data measured along system trajectories.
® Exact solutions: very difficult

® | arge state space
® Highly nonlinear dynamics
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RL: Nonlinear Discrete Time

® This strategy = backward in time procedure
® Good for:

e Off-line planning, Offline optimization, Offline control
synthesis.

® NOT online learning (optimal control synthesis using real time
data measured along system trajectories.
Temporal Difference (TD) or forward in time learning

® Exact solutions: very difficult

® | arge state space
® Highly nonlinear dynamics
Value Function approximation (VFA): Neural Networks
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Introduction: Reinf ent Learning
RL: Nonlinear Discrete Time
Safe RL: M« ions

Safe RL: Nonli

Forward-in-time Learning

Temporal Difference Error (TD error):
€k = r(Xk’Ter) + Vi (xk41) — Vir(xx) J

RHS is DT Hamiltonian

If Bellman Eq holds, e is zero.

® Linear in x.

Thus, given a policy 7(x), Least Square based solution at
each time k for ¢, = 0.

@i (AN %
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Introduction: Reinf
RL: Nonlinear Discrete
Safe RL: Moti\
Safe RL: Non
inuous Time

References

NN based approximation

Value Function approximation (VFA): Neural Networks
® Value function is sufficiently smooth over compact space
e Consider dense basis set {¢(x)} with basis vector
(Weierstrass Theorem):

¢(x) = [p1(x)2(x).-.pL(x)] R" — RE

Ve(x) = iy wigi(x) = WT6(x) )
Substituting in Bellman TD equation:
ex = r(xk, T ) + WTo(xii1) — WTo(xk) J

‘ Oumr (AN %

X ===t X2 7 (X,)
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Introduction: Reinf
[N Nonllnear Discrete

Safe RL: Non

p

Online DT Policy Iteratlon

Initialization Choose an initial stabilizing policy (admissible):

7o(xk)
Policy Evaluation

Vi1 (xi) = r(xi mi(xi)) + Vi (xet1)
(.
r(Xk, T, ) = Wiy (80xk) — d(xk11))

A

Policy Improvement

j10s) = argmin(r(xe,ui) + W1 (9(xk1)))

When r(xk, ux) = x] Qxi + u] R ux,
T2 0) = (—1/2)R 1T (x) V6T (x41) W1 @

= = = = Ty
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Introduction forc
RL: Nonlinea
e R

L: Nonline

Online Policy Iteration

Initialization
j<0
Initialize with an admissible policy
7,(x)

Value Update
(7)) =W () = 9(x0)
Policy Improvement

74 () =1/ 2R )V (. )W,

jej+1 N zrm(xk )is the optimal policy

[ Use 7, (x,) as the control policy ]—

O (AN %

Figure: Online PI
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RL: Nonlinear Discrete Time

Online DT Policy Iteration: Observations

At k + 1 : observe xi, ux = mj(Xk), Xk+1

Calculate r(xk, ux) One scalar Equation in

r(X; ) = Wiy (00%) — ¢(xk11))

Use same policy vy, = 7j(xx), collect L data = L equations
(Np(x) = R" — RE).

Determine LS based solution VAVJ-H

Repeat till VT/jH = Wj+2 — W* Apply Improved control

Oumn (AN @
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Introduction fo
RL: Nonlinea

RL: Nonl

Execution: Adaptive Critic Structures

Vin () =r(x, by (x)) + 7V (x.)

Policy Evaluation
CriticNN

Control law update
AV (x.,)

k41

1,
4a(a) =35 R 'g(x,)

Actor NN .\‘—.$—h(r‘)

Linear Systems
Nonlinear Systems

hy (%)

Figure: Actor Critic Structure
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Introduction

RL: Nonlinear Dis

R enc

Execution: Adaptive Critic Structures: Two time Scale!

Via () =r(x, by (x)) + 7V 0 (x)

Policy Evaluation
CriticNN

Cost

Control law update

dl"l(.\",, )
A,

1
0 (5,) =5 R ()

Actor NN

CriiehN Xe @ = V(%)
ActorhN X, e @—. )

Linear Systems
Nonlinear Systems

h;(x,)

Improved control law

Figure: Actor Critic Structure
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Introduction
[N

RL: Nonl

N
/ \
Vin () =r(x, h;(x,)) + 7V}\+1 (g )/'

Policy

I CriticNN

Control law update ’ - ~.

L )
e .)-——R Bl =

! Linear Sydtems
Nonlinear Systems
7

;i (x,)

Imprcved control law

Figure: Actor Critic Structure
Oumn (AN %
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Introduction
[N

RL: Nonl

Data-driven control learning
NOT
Model Free!

Control law update

\av (%)
(%, ,)-——R .g< —‘

\t

Value update
Via () =r(x, b (x)) + 7V (X))

Policy Evaluation
CriticNN

Actor NN

Linear Systems

i Systems
h‘/ (xk ) l Unknowngynamics I

Improved control law

Figure: Actor Critic Structure

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr
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RL: Nonlinear Discrete Time

Execution: Adaptive Critic Structures

RL: Model free approach = Q-function

System X = S () +g(x )y
V,(0)=0
O, (xpsuy) = r(x,u ) + 7V, (x,,)
O, (xpuy) = r(x,u,) + 70, (X4 h(x,.))
V*(xk) = n}jn(Q*(xk R7))
h*(x,)= argnlllin(Q*(xk,uk)) u-(xk):_lRflg(xk)l ARG
« 2

<@
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Introduction

Conventional RL

Conventional RL:
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Introduction: Reinforcement Learning

RL: No D te Time

Conventional RL

Conventional RL:
Does:

e Stability

e Optimality: Performance, energy consumption etc.

O (AN @
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Conventional RL

Conventional RL:
Does:

e Stability
e Optimality: Performance, energy consumption etc.

Does NOT:
® ensure SAFETY.

O (AN @
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Introduction: R

e} ar
Safe RL:
Safe RL 5 m Di

Conventional RL

Conventional RL:
Does:

e Stability

e Optimality: Performance, energy consumption etc.
Does NOT:

® ensure SAFETY.
Poses " Threat”

® during Exploration: Learning phase.

® during Exploitation: Operational phase.

O (AN @
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Safe RL: Motivations

Safe Learning

with Predictive
Safety Filter.
s

Proposed safe input
which can be
applied instead

Predicted trajectory
from application of
unsafe input

Wabersich,K.P., & Zeilinger, M. N. (2021). A predictive safety filter for learning-based control of constrained nonlinear
dynamical systems. Automatica, 129, 109597.

® Sequence of speed control inputs leads to DANGERI
® Hard constraints: Oz (RAN %

® conservative performance (optimality not guaranteed).
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Safe RL: Motivations

Safe Learning

Is this safe trajectory

Model
[ Objective ][ /Model-free ]

1 1

* Policy Evaluation

(Maximisation of Cost function (cumulative
Reward)\

Minimisation of nonlinear HJB)

* Policy Update

(controllerimprovement)

Control
Input u(k)

Dynamical
System

T State feedback x(k)

ot (CRAN @
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Safe RL: Motivations

Safe Learning

- Model Pre-defined Safety ) .
[ Objective ][ /Model-free ] constraints Is this safe trajectory

Controller
* Policy Evaluation
(Maximisation of Cost Safety Guarantees
function (cumulative « Control policy Control
Reward)\ Safe?

Minimisation of nonlinear + State transition
HIB)

within safeset?
« Policy Update ;
(controller improvement) nput

Input u(k)

Dynamical
System

T State feedback x(k)

Oumn (AN @
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Introduction

Safe RL: Objectives

Constraintsstates x

Unsafe set

Learn control policy that ensures:
e Safety (states are within a “Safe set”)

* Stability Oz (AN %

e Optimal performance
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Safe RL: Nonlinear System Discrete Time
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Safe RL: Nonlinear System Discrete Time

System

Xk+1 = f(xk) + g(xk)u(xk) (1)

where:

> x, € Q C R" states of the system

» u(xx) € U C R™ are the and the control input

» U denotes the set of all admissible control inputs
f(xk) € R"represents the drift dynamics

g(xx) € R"™™M is the input dynamics.
f

vvyy

(
(xx) is C! and x = 0 is an equilibrium state such that
f(0) = 0 and g(0) = 0.

It is assumed that system (1) is stabilizable on a prescribed

set Q € R". %

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



Introductic

L

Safe RL: Nonlinear System Discrete
Safe RL: Contir

Definition

The safe set S and its boundary OS can be mathematically defined
as:

S = {x € Qh(x) > 0}

0S = {x € QJh(x) = 0}

where h(x) : R" — R belongs to C* and h(x) > 0 represents the
admissible state space that respects the safety requirements.

@ (AN %
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e RL: M« ati
Safe RL: Nonlinear System Discrete Time
RL: Continuous Time
Re

Strategy

Definition. A set S € Q is control invariant set if
€S =3u €U | a1 €S VkeZ*

where x4 = f(x) + g(k)ur

with z € Q C R™ and uy, € U C R™

Strategy:

Learning control law (sequence of control actions)

+ that ensures positive invariant property of safe set S,

» Optimality : performance + energy consumption etc.

. CRAN %
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Safe RL: Nonlinear System Discrete

Safe RL: Continu

Safe Input set

Definition

Safe input set: The set of safe inputs for a current state xx can
be defined as the set of input that results in keeping next system'’s
state within the interior of the safe set defined in (?7?):

U = {u € R"|xk41 € intS} (5)

where xx11 = f(xx) + g(xk) u is the state evolved with the input
u.

Class K function: A continuous function « : [0,a) — [0, 00) is a
class K function if it is strictly increasing and «(0) = 0.
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Barrier Function

Definition
CBF properties (Ames et al., 2016; Brunke et al., 2022; Wabersich
et al., 2023) : The BF candidate B,(x) : S — R satisfies the
following properties:

®B,(x)>0VxeS

® B,(x) = o0 Vx € 0S

©® B,(x) is monotonically decreasing Vx € S

Oumr (AN %
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Barrier Function Candidate

», aof Do
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Definition

Control Barrier functions for DT systems Agrawal and Sreenath,
2017: A function B,(x) : S — R is a CBF on the safe set S and
for the nonlinear DT control system (1 ), if there exists:

@ locally Lipschitz class KC functions a3 and ap such that
l <B(4)<———, VxeintS (o)
AR S X ~X 77
a1 (h(a)) ~ T an (h(x))

® a safe control input uy € U®, Vx € intS such that
ABy (xkt1, Xk) = By (F(x) +8(0x) uk) — By (xk) < a3(h(xk))
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Safe RL: Contint

Control Barrier Function CBF

These conditions imply:
® uj, maintains the barrier function B,(xx) > 0, Vk € 7+ given
By(x0) =0
® safe input maintains the trajectory of system within the safe
set § if the initial state xg is within S.

Oumn (AN @
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Safety Aware Control design

Classical cost-to-go modified and augmented with a CBF
candidate as:

(e8] o0
meilr} Js (i, u) = S0 rs(xny tn) = 0 x] Qxo + u] R up + By(xn)
u —k —k

n= n=
B,(x) : S — R is augmented utility function rs(x, ux) as:

rs(xk, uk) = XZ—QX/( + u,Z—R uk + By(xx) (8)

The candidate CBF B, (x) is sensitive to a coefficient ~ that
models the relative importance of the CBF to the utility function.
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es

Safe Admissible policy and strict interiority

Definition
Safe admissible control policy: U? = U NU*°

Definition

Strict interiority of initial condition:
The initial condition of system (1) remains strictly in the interior of
the safe set S, i.e. xg € intS.

U=UnNUs#0

@i (AN %
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Simulations

t Learning

Yk+1 1 ZSJFC
Vik+1 _ 0 1+(_ /’\r/lv,or
Ok+1 0 0
din] 0 (PE)

0

Cr

"6’ Ts.ug +

ENG

)Ts

Vio. TS 0 yk-
0 (et —vo)Ts| |wf
1 Ts Pk
0 1 (1

. TS.dk (18)
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Simulations

Safety aware Reward/Utility function

Y(x1,k + Ymax)
Y(x1,k + Ymax) + 1
/og( ’7(_X1,k F }/max)

Y(=x1,k + Ymax) +1

rs(xk, uk) = % Qx + uy Ruy — m(log(

)+

)

® vy, and v are lateral displacement and its velocity
® ynax expresses the absolute value of maximum safe
displacement from the center of the road.
® ¢, is error yaw angel and )y is its derivative,
uy is the steering angle, r
. . . et A %
dy is the desired yaw rate obtained from the curvature SFEhé

Odd d d — Vio -
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Simulations

Actor and Critic NNs

d(x) = [X12 x22 X32 XE X1X2 X1X3, X1X4 X2X3
xoxa x3xg (x1 — )/max)2 Xl4aX24]

V(x) = [x1 x2 x3 X4]T
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Time

Xisafe =
= = "X{unsate
= = "Xy max

O X4 min
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Lateral displacement




Safe RL: Nonlinear System Discrete Time

Lateral displacement zoomed
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Other states

T
ateral velocity | -

0 0.2 0.4 0.6 0.8 1.2 14 1.6 1.8 2
0.1

0

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
0.2 T T T
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Time

Conclusions

Model free approach (data based)

Optimality

Stability

Safety during operation—OK!
Safety during EXPLORATION 777
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Exploitation of Learned Policy
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Conclusions

Optimality
Stability
Safety during operation—OK!

e Safety during EXPLORATION -OK!
® [nitial admissible policy —OK!
® BUT, Model BAsed!
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Continuous Time CONTINUES!

Principle Work by: Soha KANSO, 3rd Year PhD, CRAN
"Safe RL for Safety critical systems under degradation’

Kanso S, Jha MS, Theilliol D. Off-Policy Model-Based
End-to-End Safe Reinforcement Learning. International
Journal of Robust and Nonlinear Control, Under second revision.
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