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Université Paris-Saclay

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



2/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

Table of Contents

1 Introduction: Reinforcement Learning

2 RL: Nonlinear Discrete Time

3 Safe RL: Motivations

4 Safe RL: Nonlinear System Discrete Time

5 Safe RL: Continuous Time

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



3/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

Table of Contents

1 Introduction: Reinforcement Learning

2 RL: Nonlinear Discrete Time

3 Safe RL: Motivations

4 Safe RL: Nonlinear System Discrete Time

5 Safe RL: Continuous Time

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



4/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

Reinforcement Learning Architecture

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



5/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

Reinforcement Learning: Automatic Control

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



6/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

Table of Contents

1 Introduction: Reinforcement Learning

2 RL: Nonlinear Discrete Time

3 Safe RL: Motivations

4 Safe RL: Nonlinear System Discrete Time

5 Safe RL: Continuous Time

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



7/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

RL: Discrete time optimal control

System

xk+1 = f (xk) + g(xk)u(xk) (1)

• xk 2 ⌦ ⇢ Rn is the state variable vector

• ⌦ being a compact set

• u(xk) 2 U ⇢ Rm is the control input vector

• f (x) is C 1 and x = 0 is an equilibrium state such that
f (0) = 0 and g(0) = 0.

Note: u(xk) will be denoted as uk .
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RL: Discrete time optimal control

Control law/ Policy

A control policy is a function from state space to control space
⇡(·) : Rn ! Rm, that defines for every state xk , a control action:

uk = ⇡(xk) (2)

• Such mappings ! feedback controllers.

• Example: linear state-variable feedback uk = ⇡(xk) = �Kxk

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



9/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

RL: Discrete time optimal control

Goal directed performance

Cost-to-go is a sum of (discounted) future costs from the current
time k into the infinite horizon future under a prescribed control
law uk = ⇡(xk):

J (xk , uk) =
1X

n=k

r(xn, un) (3)

where r(xn, un) is the utility function defined as:
r(xn, un) = x

T
n Qxn + u

T
n R un

• Q symmetric positive semi-definite matrix Q = Q
T > 0

• R is a symmetric positive definite matrix R = R
T > 0.
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RL: Discrete time optimal control

Assumption: Stabilizable system

System (1) is stabilizable on the prescribed set ⌦ 2 Rn .

) There is a control policy u
1
k = ⇡(x) such that closed loop

system xk+1 = f (xk) + g(xk)u1k is asymptotically stable over ⌦ i.e.
u
1
k = (u1(xk), u1(xk+1), u1(xk+2), ...u1(x1)) exists that

• that stabilises the system (1)

• associated cost J(xk , u1k) is finite.

U denotes the set of all admissible control inputs.
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RL: Discrete time optimal control

For a given admissible prescribed policy ⇡(x),
the cost associated is called as it value denoted as
V⇡(xk) = J(xk ,⇡(x))
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RL: Discrete time optimal control

Objective: Optimal Cost

To find a control policy ⇡⇤(xk) that minimizes the infinite horizon
cost function,

V
⇤(xk) = min

uk2U

1X

n=k

r(xn, un), 8xk (4)

or, V ⇤(xk) = min
⇡(·)

1P
n=k

r(xn,⇡(xn)), 8xk
V

⇤(xk) ==> optimal cost or optimal value.

Optimal policy

Optimal control policy: ⇡⇤(xk) = argmin
⇡(·)

1P
n=k

r(xn,⇡(xn)), 8xk
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = ⇡(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Hamiltonian:

Optimal Cost:

V⇡(xk) =
1P
n=k

r(xn, un), 8xk
V⇡(xk) = r(xk , uk) + V⇡(xk+1)

H(xk , uk ,V⇡) = r(xk , uk)+V⇡(xk+1)� V⇡(xk)

V
⇤(xk) = min

uk2U
(r(xk , uk) + V⇡(xk+1))
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RL: Discrete time optimal control

Bellman Principle Bellman, 1957

“An optimal policy has the property that no matter what the
previous decisions (i.e. controls) have been, the remaining
decisions must constitute an optimal policy with regard to the
state resulting from those previous decisions
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = ⇡(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Hamiltonian:

Optimal Cost:

Bellman principle:
Backwards in Time!!

Optimal control (policy):

V⇡(xk) =
1P
n=k

r(xn, un), 8xk
V⇡(xk) = r(xk , uk) + V⇡(xk+1)

H(xk , uk ,V⇡) = r(xk , uk) +V⇡(xk+1)�V⇡(xk)

V
⇤(xk) = min

uk2U
(r(xk , uk) + V⇡(xk+1))

V
⇤(xk) = min

uk2U
(r(xk , uk) + V

⇤(xk+1))

⇡⇤(xk) = argmin
uk2U

(r(xk , uk) + V
⇤(xk+1))
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = ⇡(xk))

Bellman Eq/ Nonlinear
Lyapunov Eq (Recursive):
Hamiltonian:

Optimal Cost:

Bellman principle:

Optimal control (policy):
Only data required!!

V⇡(xk) =
1P
n=k

r(xn, un), 8xk
V⇡(xk) = r(xk , uk) + V⇡(xk+1)
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V
⇤(xk) = min
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(r(xk , uk) + V
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RL: Discrete time optimal control

Bellman principle:
(DT Hamilton-

Jacobi-Bellman

Equation)

Optimal control
(policy):

V
⇤(xk) = min

uk2U
(r(xk , uk) + V

⇤(xk+1))

= min
uk2U

�
x
T
k Qxk + u

T
k R uk + V

⇤(xk+1)
�

= min
uk2U

�
x
T
k Qxk + u

T
k R uk + V

⇤(f (xk) + g(xk)uk)
�

⇡⇤(xk) = argmin
uk2U

(r(xk , uk) + V
⇤(xk+1))

⇡⇤(xk) = u
⇤
k = (�1/2)R�1

g
T (xk)

@V ⇤(xk+1)
@xk+1
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RL: Discrete time optimal control

Cost (given a prescribed
policy uk = ⇡(xk))
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DT Policy Iteration

Initialization

Select any stabilizing /admissible control policy: ⇡j(xk)

Policy Evaluation

Determine the Value under the current policy using Bellman
Equation/Nonlinear Lyapunov Eq.
Vj+1(xk) = r(xk ,⇡j(xk)) + Vj+1(xk+1) ; Vj+1(0) = 0

Policy Improvement

Determine an improved policy
⇡j+1(xk) = argmin

uk2U
(r(xk , uk) + Vj+1(xk+1))
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DT Policy Iteration

Initialization

⇡j(xk)
Policy Evaluation

Vj+1(xk) = r(xk ,⇡j(xk)) + Vj+1(xk+1)
Policy Improvement

⇡j+1(xk) = argmin
uk2U

(r(xk , uk) + Vj+1(xk+1))

When r(xk , uk) = x
T
k Qxk + u

T
k R uk ,

⇡j+1(xk) = (�1/2)R�1
g
T (xk)

@Vj+1(xk+1)
@xk+1
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DT Policy Iteration: Observations

• Initial policy must be stabilizing.
• Policy Iteration (Howard, 1960; Leake and Liu, 1967) )

• Vj+2(xk)  Vj+1(xk)

• As j ! 1:
• Vj(xk) ! V

⇤(xk)

• ⇡j ! ⇡⇤

• Convergence to optimal cost and thus, optimal control policy.
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DT Policy Iteration: Observations

• Vj+1(xk) = r(xk ,⇡j(xk)) + Vj+1(xk+1); 8xk 2 ⌦
• value of using a given policy starting in all current states

possible.
• Several states ) Significant computations!

• Called full backup (Sutton and Barto, 2018)) Massive
computational load

• Bellman Eq ! fixed point equation

• Given admissible policy ⇡j ,
V

i+1(xk) = r(xk ,⇡j(xk)) + V
i (xk+1) is a contraction map

• Upon iterated starting from V
0(xk), V i (xk) ! Vj+1(xk) as

i ! 1.
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Issues

• This strategy ) backward in time procedure

• Good for:
• O↵-line planning, O✏ine optimization, O✏ine control

synthesis.
• NOT online leanring (optimla control synthesis using real time

data measured along system trajectories.

• Exact solutions: very di�cult
• Large state space
• Highly nonlinear dynamics
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Issues

• This strategy ) backward in time procedure

• Good for:
• O↵-line planning, O✏ine optimization, O✏ine control

synthesis.
• NOT online learning (optimal control synthesis using real time

data measured along system trajectories.
Temporal Di↵erence (TD) or forward in time learning

• Exact solutions: very di�cult
• Large state space
• Highly nonlinear dynamics

Value Function approximation (VFA): Neural Networks
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Forward-in-time Learning

Temporal Di↵erence Error (TD error):
ek = r(xk ,⇡xk ) + V⇡(xk+1)� V⇡(xk)

• RHS is DT Hamiltonian

• If Bellman Eq holds, ek is zero.

• Linear in x .

• Thus, given a policy ⇡(x), Least Square based solution at
each time k for ek = 0.
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NN based approximation

Value Function approximation (VFA): Neural Networks

• Value function is su�ciently smooth over compact space
• Consider dense basis set {�i (x)} with basis vector
(Weierstrass Theorem):
�(x) = ['1(x)'2(x)...'L(x)] :Rn ! RL

V⇡(x) =
PL

i=1 wi'i (x) = W
T�(x)

Substituting in Bellman TD equation:
ek = r(xk ,⇡xk ) +W

T�(xk+1)�W
T�(xk)

Figure: NN based function approximation
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Online DT Policy Iteration

Initialization Choose an initial stabilizing policy (admissible):
⇡0(xk)
Policy Evaluation

Vj+1(xk) = r(xk ,⇡j(xk)) + Vj+1(xk+1)

r(xk ,⇡xk ) = W
T
j+1(�(xk)� �(xk+1))

Policy Improvement

⇡j+1(xk) = argmin
uk2U

⇣
r(xk , uk) +W

T
j+1(�(xk+1))

⌘

When r(xk , uk) = x
T
k Qxk + u

T
k R uk ,

⇡j+1(xk) = (�1/2)R�1
g
T (xk)r�T (xk+1)Wj+1
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Online Policy Iteration

Figure: Online PI
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Online DT Policy Iteration: Observations

• At k + 1 : observe xk , uk = ⇡j(xk), xk+1

• Calculate r(xk , uk) One scalar Equation in
r(xk ,⇡xk ) = W

T
j+1(�(xk)� �(xk+1))

• Use same policy uk = ⇡j(xk), collect L data ) L equations
(!!�(x) = Rn ! RL).

• Determine LS based solution Ŵj+1

• Repeat till Ŵj+1 ⌘ Ŵj+2 ! W
⇤ Apply Improved control
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Execution: Adaptive Critic Structures

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures: Two time Scale!

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures

Figure: Actor Critic Structure
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Execution: Adaptive Critic Structures

Figure: Actor Critic Structure
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Conventional RL

Conventional RL:
Does:

• Stability

• Optimality: Performance, energy consumption etc.

Does NOT:

• ensure SAFETY.

Poses ”Threat”

• during Exploration: Learning phase.

• during Exploitation: Operational phase.
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Safe Learning

• Sequence of speed control inputs leads to DANGER!
• Hard constraints:

• conservative performance (optimality not guaranteed).
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Safe Learning
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Safe RL: Objectives

Learn control policy that ensures:
• Safety (states are within a “Safe set”)
• Stability
• Optimal performance
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Safe Set

Definition

The safe set S and its boundary @S can be mathematically defined
as:
S = {x 2 ⌦|h(x) > 0}
@S = {x 2 ⌦|h(x) = 0}
where h(x) : Rn ! R belongs to C

1 and h(x) > 0 represents the
admissible state space that respects the safety requirements.
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Safe Input set

Definition

Safe input set: The set of safe inputs for a current state xk can
be defined as the set of input that results in keeping next system’s
state within the interior of the safe set defined in (??):

U s = {u 2 Rm|xk+1 2 intS} (5)

where xk+1 = f (xk) + g(xk) u is the state evolved with the input
u.
Class K function: A continuous function ↵ : [0,↵) ! [0,1) is a
class K function if it is strictly increasing and ↵(0) = 0.
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Barrier Function

Definition

CBF properties (Ames et al., 2016; Brunke et al., 2022; Wabersich
et al., 2023) : The BF candidate B�(x) : S ! R satisfies the
following properties:

1 B�(x) > 0 8x 2 S
2 B�(x) ! 1 8x 2 @S
3 B�(x) is monotonically decreasing 8x 2 S
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Barrier Function Candidate

Rate of Damping
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Control Barrier Function CBF

Definition

Control Barrier functions for DT systems Agrawal and Sreenath,
2017: A function B�(x) : S ! R is a CBF on the safe set S and
for the nonlinear DT control system (1 ), if there exists:

1 locally Lipschitz class K functions ↵1 and ↵2 such that

1

↵1 (h (xk))
6 B�(xk) 6

1

↵2 (h (xk))
, 8x 2 intS (6)

2 a safe control input uk 2 U s , 8x 2 intS such that

�B� (xk+1, xk) := B� (f (xk) + g(xk) uk)� B� (xk) 6 ↵3(h(xk))
(7)
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Control Barrier Function CBF

These conditions imply:

• uk maintains the barrier function B�(xk) > 0, 8k 2 Z+ given
B�(x0) > 0

• safe input maintains the trajectory of system within the safe
set S if the initial state x0 is within S.

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



51/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

Safety Aware Control design

Classical cost-to-go modified and augmented with a CBF
candidate as:

min
u2U

Js (xk , u) =
1P
n=k

rs(xn, un) =
1P
n=k

x
T
n Qxn + u

T
n R un + B�(xn)

B�(x) : S ! R is augmented utility function rs(xk , uk) as:

rs(xk , uk) = x
T
k Qxk + u

T
k R uk + B�(xk) (8)

The candidate CBF B�(x) is sensitive to a coe�cient � that
models the relative importance of the CBF to the utility function.
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Safe Admissible policy and strict interiority

Definition

Safe admissible control policy: Ua = U \ U s

Definition

Strict interiority of initial condition:
The initial condition of system (1) remains strictly in the interior of
the safe set S, i.e. x0 2 intS.

Assumption

Ua = U \ U s 6= ;
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Simulations

Car model
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Simulations

Safety aware Reward/Utility function

rs(xk , uk) = x
T
k Qxk + u

T
k Ruk �m(log(

�(x1,k + ymax)

�(x1,k + ymax) + 1
)+

log(
�(�x1,k + ymax)

�(�x1,k + ymax) + 1
))

• yk and vk are lateral displacement and its velocity
• ymax expresses the absolute value of maximum safe
displacement from the center of the road.

• �k is error yaw angel and  k is its derivative,
• uk is the steering angle,
• dk is the desired yaw rate obtained from the curvature of the
road as dk = vl0

Rr
;

• vl0 is constant longitudinal speed and Rr ,k is road radius of
curvature at any k , assumed constant here.
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Simulations

Actor and Critic NNs

�(x) = [x21 x
2
2 x

2
3 x

2
4 x1x2 x1x3, x1x4 x2x3

x2x4 x3x4 (x1 � ymax)
2
x1

4, x2
4]

 (x) = [x1 x2 x3 x4]
T
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Lateral displacement zoomed
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Lateral displacement
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Lateral displacement zoomed
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Other states
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Conclusions

• Model free approach (data based)

• Optimality

• Stability

• Safety during operation—OK!

• Safety during EXPLORATION ???

• Initial admissible policy ?????
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Example
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Conclusions

• Optimality

• Stability

• Safety during operation—OK!

• Safety during EXPLORATION –OK!

• Initial admissible policy –OK!

• BUT, Model BAsed!
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Continuous Time CONTINUES!

Principle Work by: Soha KANSO, 3rd Year PhD, CRAN
”Safe RL for Safety critical systems under degradation’

Kanso S, Jha MS, Theilliol D. O↵-Policy Model-Based

End-to-End Safe Reinforcement Learning. International
Journal of Robust and Nonlinear Control, Under second revision.

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



86/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

References I

Agrawal, A., & Sreenath, K. (2017).Discrete Control Barrier
Functions for Safety-Critical Control of Discrete Systems
with Application to Bipedal Robot Navigation.. Robotics:
Science and Systems, 13.

Ames, A. D., Xu, X., Grizzle, J. W., & Tabuada, P. (2016).Control
barrier function based quadratic programs for safety critical
systems. IEEE Transactions on Automatic Control, 62(8),
3861–3876.

Bellman, R. (1957).A markovian decision process. Journal of
mathematics and mechanics, 679–684.

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



87/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

References II

Brunke, L., Gree↵, M., Hall, A. W., Yuan, Z., Zhou, S.,
Panerati, J., & Schoellig, A. P. (2022).Safe learning in
robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and

Autonomous Systems, 5, 411–444.
Howard, R. A. (1960).Dynamic programming and markov

processes..
Leake, R., & Liu, R.-W. (1967).Construction of suboptimal control

sequences. SIAM Journal on Control, 5(1), 54–63.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An

introduction. MIT press.

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023



88/88

Introduction: Reinforcement Learning
RL: Nonlinear Discrete Time

Safe RL: Motivations
Safe RL: Nonlinear System Discrete Time

Safe RL: Continuous Time
References

References III

Wabersich, K. P., Taylor, A. J., Choi, J. J., Sreenath, K.,
Tomlin, C. J., Ames, A. D., & Zeilinger, M. N.
(2023).Data-driven safety filters: Hamilton-jacobi
reachability, control barrier functions, and predictive
methods for uncertain systems. IEEE Control Systems

Magazine, 43(5), 137–177.

Mayank S JHA, mayank-shekhar.jha@univ-lorraine.fr Talk SAUTOS: Safe AUTOnomous Systems, 26/10/2023


	Introduction: Reinforcement Learning
	RL: Nonlinear Discrete Time 
	Safe RL: Motivations
	Safe RL: Nonlinear System Discrete Time
	Safe RL: Continuous Time 
	References

