(Some examples of) Machine Learning for robotics and autonomous vehicles

SAUTOS Thematic School

David Filliat - U2IS - ENSTA Paris
Perception / Decision / Action

AI / Software view of autonomous systems architecture
Machine Learning is important for robotics and intelligent vehicles

- Necessary for Perception
 - Vision, Lidar, Multi-sensor systems
 - Object/obstacle detection, road/path detection
 - Less for sensor fusion, mapping, localization...

- Useful for Decision
 - Trajectory prediction, manoeuvre prediction
 - Risk estimation (but guarantees ?)

- Promising (?) for Action
 - Learning model for MPC / tuning ‘classical’ controllers
 - End to end driving (e.g., Imitation learning)
 - Reinforcement learning
Challenges (~School program)

For autonomous system
- Robust environment perception (rare situations, weather...)
- Safe / guaranteed algorithms for (perception,) localization, planning, control ...
- Testing, validation, certification (ISO XXX)
- Interaction with humans (inside/outside the vehicle)

In machine learning more specifically
- Data annotation / self-supervision
- Robustness / Generalization / Domain adaptation
- Validation / Guarantees / Explicability of learned models
- Exploration / safety for Reinforcement learning
Reinforcement Learning (RL)
Reinforcement learning

Definition

- Sequential decision problem
- No ‘output’ variable as in supervised learning, but a measure of answer/behaviour quality (**reward**)
- Simplest form: ‘bandit’: choose between alternative with different rewards -> Find the best strategy to minimise **regret** (i.e., explore/exploit)
Reinforcement learning

- Problems with evolving state (Markov Decision Processes)
- Rewards can be delayed (e.g., win a game)

- Find a ‘policy’ mapping ‘state’ to ‘action’ maximizing sum of rewards
Value-Based Reinforcement Learning

Markov Decision Process, Policy & RL objective:

\[\mathcal{M} = (S, A, P, R, \gamma) \]
\[T = (s, a, r, s+) \]
\[a = \pi(s) \]
\[\pi^* \in \arg \max_{\pi} \mathbb{E}_{T \sim \pi, P^\pi} \sum_{t=0}^{\infty} \gamma^t r_t \]

Bellman evaluation operator:

\[Q^\pi(s, a) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | s_t = s; a_t = a \right] \]

Bellman error and residuals (TD-Learning)

\[\mathcal{B}^\pi Q(s, a) = Q^\pi(s, a) - \mathcal{T}^\pi Q^\pi(s, a) \]
\[\mathcal{L}_{BR} = \mathbb{E}_T \left[\| \mathcal{B}^\pi Q(s, a) \|^2 \right] \]
RL in Robotics vs Games

Deep Reinforcement Learning

- Big (cheap) data
- Slow Learning (millions of interactions with environment \(\Rightarrow\) simulation)
- Learn one task defined by researcher
- Quite unstable (hyperparameters, …)

Reinforcement Learning for robotics

- Little (expensive) data
- Would need fast incremental learning during interaction with real world
- Learn multiple tasks
- No researcher \(\Rightarrow\) autonomous learning
- Needs to be stable, robust
Moravec Paradox

Encoded in the large, highly evolved sensory and motor portions of the human brain is a billion years of experience about the nature of the world and how to survive in it. The deliberate process we call reasoning is, I believe, the thinnest veneer of human thought, effective only because it is supported by this much older and much more powerful, though usually unconscious, sensorimotor knowledge. We are all prodigious olympians in perceptual and motor areas, so good that we make the difficult look easy. Abstract thought, though, is a new trick, perhaps less than 100 thousand years old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it.

Hans Moravec
Moravec Paradox

- Level of abstraction
- Perceived human performance
- Real human performance
- Intrinsic task complexity
Reinforcement Learning and Robotics

Robotics constraints
- Data are expensive (vs games), robots are slow, break easily
- Search (behaviour) space are huge, enough (iid) data difficult to gather
- Incremental learning, multi-tasks learning ...

How to improve efficiency of reinforcement learning on real robots?
- Learn compact representation to accelerate learning in real life
- Use auxiliary tasks to accelerate learning in real life
- Learn in simulation and transfer to real life

All of the above?
State Representation Learning (SRL)
Often, robot controllers require simple, ‘high-level’, low dimension inputs (the ‘state’ of the robot/world)
- E.g., grasping: object position, gripper position
 driving: road direction, obstacle positions, ...

Vision based control requires filtering to get this information
- Many solutions,
- often hand-crafted,
- task specific
State representation learning

Finding the right representation without supervision

- Deep learning makes it possible to learn useful representation
- Representations can be specialized for robotics/control
- Exploit observations / actions / rewards sequences, avoid human supervision
Why learning states?

Facilitate adaptation to new task
- Discover the relevant state from exploration/demonstrations

Controllers are easier to train in such lower dimension
- Possibly faster than end-to-end; Could help transfer across tasks

DREAM approach
[Doncieux et al., FiN18]
(State) Representation Learning?

SRL is a particular case of Representation Learning

- Entails a control/robotics context where actions are possible
- Often looks for interpretable info./info. with a physical meaning
 - e.g., position, speed, angle...
- Disentanglement can also be interesting

SRL can be an objective by itself, but is often present in more general approaches

- e.g., as an auxiliary task in RL
What is a good state?

A good state representation is:

- Markovian, i.e. it summarizes all the necessary information to be able to choose an action within the policy, by looking only at the current state.
- Able to:
 - Represent the true value of the current state well enough for policy improvement.
 - Generalize the learned value-function to unseen states with similar futures.
- Low dimensional for efficient estimation.

A good state representation should be:

- Sufficient (i.e. ~markovian)
- Minimal (Occam's razor).
- Easy to work with i.e., disentangled

[Böhmer'15]
[Achille and Soatto, 2017]
SRL approaches

Learning state representation using self-supervision

- Several objectives can be exploited without human labelling
- Objectives can be combined

[Lesort & al., NN18]
Reconstructing the observation

Train a state that is sufficient for reconstructing the input observation

- AE, DAE, VAE, ...
- (Bi)GANs, ...

Downside: sensitive to irrelevant variations (wrt actions)
Forward models

Find state from which it is easy to predict next state
- Additional constraints to avoid fixed representations (AE, triplet loss...)
- Impose constraints on forward model (e.g., linear model)

Naturally discard irrelevant features

Can be used for model-based RL, MPC,...
Inverse models

Find a state sufficient to recover action from 2 observations
- Impose constraints on model (e.g., linear model)

Focus on states that can be controlled

Useful for a direct control model
- E.g., goal conditioned policies
- \(a = \pi(s,g) \)
Prior models

Encode high-level constraints on the states
- Temporal continuity
- Controllability
- Inertia
- etc....

May exploit rewards
Robotic Priors

Use *a priori* knowledge to learn representations relevant to the task

Temporal coherence Prior: Two states close to each other in time are also close to each other in the state representation space.

\[L_{\text{Temp}}(\mathcal{D}, \hat{\phi}) = E[\| \Delta \hat{s}_t \|^2] , \]

Proportionality Prior: Two identical actions should result in two proportional magnitude state variations.

\[L_{\text{Prop}}(\mathcal{D}, \hat{\phi}) = E[\| \| \Delta \hat{s}_{t_2} \| - \| \Delta \hat{s}_{t_1} \||^2 | a_{t_1} = a_{t_2}] , \]

Repeatability Prior: Two identical actions applied at similar states should provide similar state variations, not only in magnitude but also in direction.

\[L_{\text{Rep}}(\mathcal{D}, \hat{\phi}) = E[e^{-\| \Delta \hat{s}_{t_2} - \Delta \hat{s}_{t_1} \|^2} | \Delta \hat{s}_{t_2} - \Delta \hat{s}_{t_1} |^2 | a_{t_1} = a_{t_2}] , \]

Causality Prior: If two states on which the same action is applied give two different rewards, they should not be close to each other in the state representation space.

\[L_{\text{Caus}}(\mathcal{D}, \hat{\phi}) = E[e^{-\| \hat{s}_{t_2} - \hat{s}_{t_1} \|^2} | a_{t_1} = a_{t_2}, r_{t_1+1} \neq r_{t_2+1}] , \]
Robotic Priors [Jonschkowski et. al. 2015]

Use *a priori* knowledge to learn representations relevant to the task.
Mixing objectives

Integrating several approaches
Multiple objectives
- Reconstruct observation using VAE
- Learn a locally linear forward model
- Exploit this forward model in optimal control setting
SRL: state of the art

State Representation Learning for Control: An Overview

Timothée Lesort1, 2, Natalia Díaz-Rodríguez1, Jean-François Goudou2, and David Filliat1

1U2IS, ENSTA ParisTech, Inria FLOWERS team, Université Paris Saclay, Palaiseau, France,\
{timothee.lesort, natalia.diaz, david.filliat}@ensta-paristech.fr
2Thales, Theresia Laboratory, Palaiseau, France,\
{jean-francois.goudou@thalesgroup.com}

Contents

1 Introduction

2 Formalism and definitions
 2.1 SRL Formalism
 2.2 State representation characteristics
 2.3 State representation learning applications

3 Learning objectives
 3.1 Reconstructing the observation
 3.2 Learning a forward model
 3.3 Learning an inverse model
 3.4 Using feature adversarial learning
 3.5 Exploiting rewards
 3.6 Other objective functions
 3.7 Using hybrid objectives

4 Building blocks of State Representation Learning
 4.1 Learning tools
 4.1.1 Auto-encoders
 4.1.2 Denoising auto-encoders (DAE)
 4.1.3 Variational auto-encoders (VAE)
 4.1.4 Siamese networks
 4.2 Observation/action spaces
 4.3 Evaluating learned state representations
 4.4 Evaluation scenarios

5 Discussion and future trends
 5.1 SRL models for autonomous agents
 5.2 Assessment, comparison and reproducibility in SRL
 5.3 Providing interpretable systems

6 Conclusion
State representation learning Toolbox

https://github.com/araffin/robotics-rl-srl

GT states (Env. 2) Learned States RL Performance

[Lesort et al. 18] [Raffin et al. 18]
SRL Toolbox

A set of baselines
- Auto Encoders
- Variational Auto Encoders
- Robotic priors
- Forward Models
- Inverse models

A set of evaluation tools
- RL (Stable Baselines)
- PPO, CMA-ES, ARS, ...
- KNN-MSE
- Ground truth correlation

RL Performance
SRL Toolbox

A set of visualization tools

Real-time SRL Interactive scatter

Latent visualization
SRL Toolbox

A set of visualization tools

State / GT correlation

State vs State plot

Correlation Matrix: $\hat{s} = $ Predicted states | $\hat{s} = $ Agent's position
SRL Toolbox

Some lessons learned

- Many methods’ performance is quite task specific
 - E.g. robotic priors fail on robotic arms
- Autoencoders/VAE work quite well if extreme (small or large) noise
- Predicting a forward and inverse model often efficient
- Random states often reasonably efficient
- SRL + RL usually more efficient than end-to-end RL

- Encoding robot state AND environment state may be difficult
 - E.g. robotic priors work with fixed goal, but not moving goal
SRL - Split model

Learning structured state representation

- Structure / disentangle / split state representation
- Forward/inverse models -> robot state
- Autoencoder/reward -> environment state

[Raffin et al. SPIRL19]
SRL - Split model

Learning structured state representation
- Can learn representation with moving goal
- Better sample efficiency / robustness

[Raffin et al. SPIRL19]
SRL - Split model

Learning structured state representation

- But not so efficient on more complex tasks

[Raffin et al. SPIRL19]
Continual State Representation Learning
Continual Learning

Learning when tasks evolve
- New samples in existing classes / New classes
- Without forgetting previous tasks
- Gradient descent (fine tuning) will forget....

Several existing approaches
- Rehearsal (memorize old information to replay it)
- Regularization of important weights (e.g. EWC)
- Architectural evolution
- Generative Replay (use generative model to memorize old information)
S-TRIGGER (Self-TRIGgered GEnerative Replay)

Continual State Representation Learning
- Agent facing tasks in sequence
- Environment appearance will change (and possibly reward)
- Can we detect the modifications automatically?
- Can we adapt state representation without forgetting?

Using VAE for SRL
- Learn relevant state (with limitations...)
- Detect modification: statistical test on reconstruction error (Welch’s t-test)
- Use VAE for Generative Replay in order to update State Representation

[Caselle-Dupré et al., IJCNN21]
S-TRIGGER (Self-TRIGgered GEnerative Replay)
S-TRIGGER (Self-TRIGgered GEnerative Replay)

Envs:

RL with final state:
S-TRIGGER (Self-TRIGgered GEnerative Replay)

Advantages

- Limited forgetting of previously acquired information
- No need to access to past data
- Bounded system size
- Automatic detection of environment changes

Limitations

- Focuses on appearance only, don’t detect change in dynamics or task
- Rely on VAE, limited for more complex tasks
Robust Reinforcement Learning
Robustness in RL

Generalization in RL

– Policies are often evaluated in their training environment (train == test !!)

– Controllers would need robustness to irrelevant appearance / dynamics changes

– One example is when training in simulation / testing in real life
Robustness in RL

Sim to Real

- Because RL still very sample hungry
- Need to face a large domain gap: Sim2Real challenge
- Should rely on relevant info (e.g., 3D pose), and discard irrelevant features (e.g., appearance)
- Existing solutions: Data augmentation, domain randomization ...
- VIBR: better exploitation of domain randomization

[Dupuis et al., 23]
Data augmentation

Train representations insensitive to added noise
 – Common in all deep learning models
 – Self-supervised representation learning in Deep Learning

 – Many possible pretext tasks: rotation, localization, inpainting, remove data augmentation...
Domain randomization

Train representation insensitive to noise in the simulation parameters

- Well adapted to RL and Sim2Real transfer
- More information about underlying state than Data Augmentation
- Can focus / control robustness to particular features
Distracting Control Suite

Based upon Deepmind Control Suite

- 6 control problems in a physics simulation
- Different action spaces (joint positions/velocities)
- Different reward modalities (dense and sparse)
- High-dimensional state (image 100x100)
- Multiple variants with a curriculum of visual distractions
 - Camera position (static or dynamic) / Body color / Background videos
Invariant representation or value function?

State Representation Learning
- Learn a feature vector invariant to noise
- In general quite difficult, much more information than what RL needs
- Representation learning objective is not aligned with true task objective

[Bréllman et al. 23]
Invariant representation or value function?

State Representation Learning
- Same model capacity for two tasks instead of one: RL and representation learning: trade-off between the two

Invariant value function
- In value-based RL, we only need robustness of value function
- Learning invariant scalar value function is much simpler

Invariant prediction is a better option when sufficient
- But will loose generalization to other task
View-Invariant Bellman Residuals (VIBR)

Invariant value function learning using Domain Randomization

- Take advantage of simulation to generate two images with same state
- Use Bellman Residual in each domain
- Use Bellman Residual in cross domains

\[(\mathcal{B}^\pi Q)(s, a) = Q^\pi(s, a) - T^\pi Q^\pi(s, a)\]

\[
\begin{align*}
Q^1 - TQ^1 \\
Q^1 - TQ^2 \\
Q^2 - TQ^1 \\
Q^2 - TQ^2
\end{align*}
\]

\[
\mathcal{L}_{BR}(k, l) := \|\mathcal{B}^\pi Q_\theta(x^k, x^l)\|^2
\]

\[
\hat{E}[\mathcal{L}_{BR}(k, l)] = \frac{1}{K^2} \sum_{k,l} \mathcal{L}_{BR}(k, l)
\]
Train a model over **K distinct training domains** to minimize the **OOD risk**

Empirical Risk Minimization

\[\sum \]

Robust Optimization

\[\text{max} \]

Risk Invariance

\[\sum \]

3rd trick
View-Invariant Bellman Residuals (VIBR)

Invariant value function / cross domain Bellman residuals / risk invariance

Training objective: \(\mathcal{L}_{BR}(k, l) := \| B^\pi Q_\theta(x^k, x^l) \|^2 \) (Pairwise Bellman residuals)

\[
\mathcal{L}_{VIBR} = \hat{\mathbb{E}}(k,l) \left[\mathcal{L}_{BR}(k, l) \right] + \beta \hat{\text{Var}}(\mathcal{L}_{BR}(k, l))
\]

where \(\hat{\text{Var}}(\mathcal{L}_{BR}(k, l)) = \frac{1}{K^2} \sum_{k,l} \left(\mathcal{L}_{BR}(k, l) - \hat{\mathbb{E}}[\mathcal{L}_{BR}(k, l)] \right)^2 \) (Risk Invariance)

[Dupuis et al., 23]
Risk Minimization

Intuition of the effect on generalization
Comparison with baselines

Pure RL
- **DrQ**: Regularization of Q-value network by data augmentation + ensembling

RL + Representation Learning
- **CURL**: Contrastive learning auxiliary task
- **SPR**: Self-supervised next latent state prediction auxiliary task
- **DBC**: Learns task-relevant representations with a metric-based self-supervised objective
- **FM**: Naïve baseline of feature matching (MSE)

Ball in cup
- Catch
Cartpole Swingup
Cheetah Run
Finger Spin
Reacher Easy
Walker Walk

VIBR trained on C0 and C2
Robust Evaluation

Results over 4 random seeds

- Normalized Return per episode
- Bootstrapped metrics over seed and evaluation episode:

Robust Average (IQM)

Generalization Gap

\[g(C_i) = 1 - \frac{\text{IQM}(C_i)}{\text{IQM}(C0)} \]

https://github.com/google-research/rliable
Detailed results per curriculum

VIBR flattens the performance curve across domains
Detailed results per curriculum

Training distribution matters

![Graphs showing IQM and G metrics for different curricula](chart.png)
Failure case of invariant representation learning

- FM & CURL auxiliary tasks are completely orthogonal to RL
- SPR & DBC are more aligned with RL
- Better alignment seem to help performance a little (expected)
- FM completely fails: auxiliary task ignored by model
Impact of variance regularization vs multi-view training

Optimal choice of beta depends on the task
Conclusion

Reinforcement learning has difficulties linked to the robotics context, but can exploit constraints/knowledge

Take advantage of the domain
- Exploit constraints on relevant info (low dim, controllable, predictable...)
- Exploit unsupervised (self supervised) learning
- Learn in simulation using easy to simulate features (e.g. 3D motion)
- Exploit efficiently domain randomization

Many approaches
- Many existing approaches that can be combined
- Proposed a new way to combine AE & models, perform continual learning, increase invariance to noise...
Perspectives

Very active area

– Many Sim to Real transfer approaches (domain randomization, domain adaptation, …)
– Many new state representation learning approaches associated to unsupervised pretraining of CNNs
– Some fixed representation may be useful (e.g., Fourier features)
– Define / improve representation disentanglement (explicability)
– Merge everything ?
 • Supervised/self supervised pre-training in simulation with SRL, randomization, view invariance,…
 • Ensure disentanglement/interpretability in simulation
 • Fine tuning on real data with offline RL, or online with SRL as auxiliary tasks

[Brellman et al. 21]
Behind these results

Students
- Hugo Caselles-Dupré
- Timothée Lesort
- Antonin Raffin
- Ashley Hill
- René Traoré
- David Brellmann
- Tom Dupuis

Colleagues
- Natalia Diaz
- Michael Garcia Ortiz
- Jean François Goudou
- Quoc Cong Pham
- Jaonary Rabarisoa
- Goran Frehse

Projects
- H2020 DREAM
- H2020 VeriDREAM
References

[Caselle-Dupré et al., IJCNN21] **S-trigger: Continual state representation learning via self-triggered generative replay.** Caselles-Dupré, H., Garcia-Ortiz, M., & Filliat, D. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7).

[Brellman et al. 21] **Fourier Features in Reinforcement Learning with Neural Networks** David Brellmann, Goran Frehse, David Filliat, submitted TMLR

[Dupuis et al. 23] **Vibr: Learning view-invariant value functions for robust visual control** Tom Dupuis, Jaonary Rabarisoa, Quoc Cuong Pham, David Filliat, CoLLAS 2023.