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Perception / Decision / Action

AI / Software view of autonomous systems architecture
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Machine Learning for autonomous systems

Machine Learning is important for robotics and 
intelligent vehicles

– Necessary for Perception 
• Vision, Lidar, Multi-sensor systems
• Object/obstacle detection, road/path detection
• Less for sensor fusion, mapping, localization…

– Useful for Decision
• Trajectory prediction, manoeuvre prediction
• Risk estimation (but guarantees ?)

– Promising (?) for Action
• Learning model for MPC / tuning ‘classical’ 

controllers
• End to end driving (e.g., Imitation learning)
• Reinforcement learning
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Challenges (~ School program)
For autonomous system

– Robust environment perception (rare situations, weather…)
– Safe / guaranteed algorithms for (perception,) localization, planning, 

control …
– Testing, validation, certification (ISO XXX)
– Interaction with humans (inside/outside the vehicle)

In machine learning more  specifically
– Data annotation / self-supervision
– Robustness / Generalization / Domain adaptation
– Validation / Guarantees / Explicability of learned models
– Exploration / safety for Reinforcement learning



Reinforcement Learning (RL)
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Reinforcement learning

Definition
– Sequential decision problem
– No ‘output’ variable as in supervised learning, but a measure of 

answer/behaviour quality (reward)
– Simplest form : ‘bandit’ : choose between alternative with different 

rewards -> Find the best strategy to minimise regret (i.e., explore/exploit)
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Reinforcement learning
– Problems with evolving state
(Markov Decision Processes)
– Rewards can be delayed 
(e.g., win a game)

– Find a ‘policy’ mapping ‘state’ to ‘action’ maximizing sum of rewards



Machine Learning for Robotics – SAUTOS School – David Filliat - 23/10/23 8

Value-Based Reinforcement Learning

Markov Decision Process, Policy & RL objective:

Bellman evaluation operator:

Bellman error and residuals (TD-Learning)

a = p�(s)
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RL in Robotics vs Games

• Big (cheap) data
• Slow Learning (millions of interactions with 

environment è simulation)
• Learn one task defined by researcher
• Quite unstable (hyperparameters, …)

Deep
Reinforcement 

Learning

• Little (expensive) data
• Would need fast incremental learning 

during interaction with real world
• Learn multiple tasks
• No researcher à autonomous learning
• Needs to be stable, robust

Reinforcement 
Learning 

for robotics
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Moravec Paradox
Encoded in the large, highly evolved sensory and motor 

portions of the human brain is a billion years of experience 
about the nature of the world and how to survive in it. The 

deliberate process we call reasoning is, I believe, the thinnest 
veneer of human thought, effective only because it is 

supported by this much older and much more powerful, 
though usually unconscious, sensorimotor knowledge. We are 

all prodigious olympians in perceptual and motor areas, so 
good that we make the difficult look easy. Abstract thought, 
though, is a new trick, perhaps less than 100 thousand years 
old. We have not yet mastered it. It is not all that intrinsically 

difficult; it just seems so when we do it.
Hans Moravec
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Moravec Paradox

Level of abstraction

Real human performance

Intrinsic task complexity

Perceived human 
performance
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Reinforcement Learning and Robotics

Robotics constraints
– Data are expensive (vs games), robots are slow, break easily
– Search (behaviour) space are huge, enough (iid) data difficult to gather 
– Incremental learning, multi-tasks learning …

How to improve efficiency of reinforcement learning on real robots ?
– Learn compact representation to accelerate learning in real life
– Use auxiliary tasks to accelerate learning in real life
– Learn in simulation and transfer to real life

All of the above ?



State Representation Learning 
(SRL)
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States ?

Often, robot controllers require simple, ‘high-level’, low dimension 
inputs (the ‘state’ of the robot/world)

– E.g., grasping: object position, gripper position 
driving: road direction, obstacle positions, …

Vision based control requires 
filtering to get this information 

– Many solutions, 
– often hand-crafted, 
– task specific



Machine Learning for Robotics – SAUTOS School – David Filliat - 23/10/23 15

State representation learning

Finding the right representation without supervision
– Deep learning makes it possible to learn useful representation
– Representations can be specialized for robotics/control
– Exploit observations / actions / rewards sequences, avoid human 

supervision
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Why learning states ?

Facilitate adaptation to new task
– Discover the relevant state from exploration/demonstrations

Controllers are easier to train in such lower dimension
– Possibly faster than end-to-end; Could help transfer across tasks

CNN Motor
Commands

Reinforcement
Learning

CNN Motor
Commands

Reinforcement
Learning

NN

State
??

DREAM approach
[Doncieux et al., FiN18]
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(State) Representation Learning ?

SRL is a particular case of Representation Learning
– Entails a control/robotics context where actions are possible
– Often looks for interpretable info./ info. with a physical meaning

• e.g., position, speed, angle...
– Disentanglement can also be interesting

SRL can be an objective by itself, but is often present in more general 
approaches

– e.g., as an auxiliary task in RL
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What is a good state ?

A good state representation is :
– Markovian, i.e. it summarizes all the necessary information to be able 

to choose an action within the policy, by looking only at the current 
state. 

– Able to:
• Represent the true value of the current state well enough for policy 

improvement. 
• Generalize the learned value-function to unseen states with similar futures. 

– Low dimensional for efficient estimation.
A good state representation should be :

– Sufficient (i.e. ~markovian)
– Minimal (Occams razor).
– Easy to work with i.e., disentangled

[Böhmer’15]

[Achille and Soatto, 2017]
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SRL approaches

Learning state representation using self-supervision
– Several objectives can be exploited without human labelling
– Objectives can be combined

Autoencoders                Forward Models               Inverse models                         Priors

[Lesort & al., NN18]
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Reconstructing the observation

Train a state that is sufficient for  reconstructing the 
input observation 

– AE, DAE, VAE, …
– (Bi)GANs, …

Downside: sensitive to irrelevant variations (wrt actions)
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Forward models

Find state from which it is easy to predict next state
– Additional constraints to avoid fixed representations (AE, 

triplet loss…)
– Impose constraints on forward model (e.g., linear model)

Naturally discard irrelevant features
Can be used for model-based RL, MPC,…
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Inverse models

Find a state sufficient to recover action from 2 observations
– Impose constraints on model (e.g., linear model)

Focus on states that can be controlled
Useful for a direct control model

– E.g., goal conditioned policies
– a = p(s,g)
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Prior models

Encode high-level constraints on the states
– Temporal continuity
– Controllability
– Inertia
– etc….

May exploit rewards
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Robotic Priors

Use a priori knowledge to learn representations relevant to the task 

[Jonschkowski et. al. 2015]
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Robotic Priors

Use a priori knowledge to learn representations relevant to the task 

[Jonschkowski et. al. 2015]
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Mixing objectives

Integrating several approaches
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Embed to Control (E2C)

Multiple objectives
– Reconstruct observation using VAE
– Learn a locally linear forward model
– Exploit this forward model in optimal control setting

[Watter’18]
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SRL : state of the art
[Lesort et al, NN18] 
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State representation learning Toolbox
[Lesort et al. 18]
[Raffin et al. 18]]https://github.com/araffin/robotics-rl-srl
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SRL Toolbox

A set of baselines
– Auto Encoders
– Variational Auto Encoders
– Robotic priors
– Forward Models
– Inverse models

A set of evaluation tools
– RL (Stable Baselines) 
– PPO, CMA-ES, ARS, …
– KNN-MSE
– Ground truth correlation
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SRL Toolbox

A set of visualization tools
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SRL Toolbox

A set of visualization tools

State / GT correlation State vs State plot
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SRL Toolbox

Some lessons learned
– Many methods’ performance is quite task specific

• E.g. robotic priors fail on robotic arms
– Autoencoders/VAE work quite well if extreme (small or large) noise
– Predicting a forward and inverse model often efficient
– Random states often reasonably efficient
– SRL + RL usually more efficient than end-to-end RL

– Encoding robot state AND environment state may be difficult
• E.g. robotic priors work with fixed goal, but not moving goal
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SRL - Split model

Learning structured state representation
– Structure / disentangle / split state 

representation
– Forward/inverse models -> robot 

state
– Autoencoder/reward -> 

environment state

[Raffin et al. SPIRL19]
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SRL - Split model

Learning structured state representation
– Can learn representation with moving goal
– Better sample efficiency / robustness 

[Raffin et al. SPIRL19]
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SRL - Split model

Learning structured state representation
– But not so efficient on more complex tasks

[Raffin et al. SPIRL19]



Continual 
State Representation Learning
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Continual Learning

Learning when tasks evolve
– New samples in existing classes / New classes
– Without forgetting previous tasks 
– Gradient descent (fine tuning) will forget….

Several existing approaches
– Rehearsal (memorize old information to replay it)
– Regularization of important weights (e.g. EWC)
– Architectural evolution
– Generative Replay (use generative model to memorize old information)

Review paper
[Lesort et al, IF20] 
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S-TRIGGER (Self-TRIGgered GEnerative Replay) 

Continual State Representation Learning
– Agent facing tasks in sequence
– Environment appearance will change (and possibly reward)
– Can we detect the modifications automatically ?
– Can we adapt state representation without forgetting ?

Using VAE for SRL
– Learn relevant state (with limitations…)
– Detect modification : statistical test on reconstruction error (Welch’s t-test)
– Use VAE for Generative Replay in order to update State Representation

[Caselle-Dupré et al., IJCNN21] 
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S-TRIGGER (Self-TRIGgered GEnerative Replay) 
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S-TRIGGER (Self-TRIGgered GEnerative Replay) 

Envs:

RL with final state:
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S-TRIGGER (Self-TRIGgered GEnerative Replay) 

Advantages
– Limited forgetting of previously acquired information
– No need to access to past data
– Bounded system size
– Automatic detection of environment changes

Limitations
– Focuses on appearance only, don’t detect change in dynamics or task
– Rely on VAE, limited for more complex tasks



Robust 
Reinforcement Learning
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Robustness in RL

Generalization in RL
– Policies are often evaluated in their training environment 

(train == test !!)
– Controllers would need robustness to irrelevant appearance / 

dynamics changes
– One example is when training in simulation / testing in real life
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Robustness in RL

Sim to Real
– Because RL still very sample hungry
– Need to face a large domain gap : Sim2Real 

challenge
– Should rely on relevant info (e.g., 3D pose), and 

discard irrelevant features (e.g., appearance)
– Existing solutions : Data augmentation, domain 

randomization …
– VIBR : better exploitation of domain 

randomization

Relevant information

Noise

[Dupuis et  al., 23]
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Data augmentation

Train representations insensitive to added noise
– Common in all deep learning models
– Self-supervised representation learning in Deep Learning

– Many possible pretext tasks : rotation, localization, inpainting, remove data 
augmentation…
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Domain randomization

Train representation insensitive to noise in the simulation parameters
– Well adapted to RL and Sim2Real transfer
– More information about underlying state than Data Augmentation
– Can focus / control robustness to particular features
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Distracting Control Suite

Based upon Deepmind Control Suite
– 6 control problems in a physics simulation
– Different action spaces (joint positions/velocities)
– Different reward modalities (dense and sparse)
– High-dimensional state (image 100x100)
– Multiple variants with a curriculum of visual distractions

• Camera position (static or dynamic) / Body color /Background videos
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Invariant representation or value function ?

State Representation Learning
– Learn a feature vector invariant to noise
– In general quite difficult, much more information than what RL needs
– Representation learning objective is not aligned with true task 

objective

49

[Brellman et al. 23]
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Invariant representation or value function ?

State Representation Learning
– Same model capacity for two tasks instead of one: RL and 

representation learning : trade-off between the two
Invariant value function

– In value-based RL, we only need robustness of value function
– Learning invariant scalar value function is much simpler

Invariant prediction is a better option when sufficient
– But will loose generalization to other task

50

1st trick
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View-Invariant Bellman Residuals (VIBR)

Invariant value function learning using Domain Randomization
– Take advantage of simulation to generate two images with same state
– Use Bellman Residual in each domain
– Use Bellman Residual in cross domains

BR

Q1 – TQ1

Q1 – TQ2

Q2 – TQ1

Q2 – TQ2

(ERM)

2nd trick
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Risk Minimization
Train a model over K distinct training domains to minimize the OOD risk

Domain 
1

Domain 
2

Domain 
3

Domain 
4

Domain 
1

Domain 
2

Domain 
3

Domain 
4

Domain 
1

Domain 
2

Domain 
3

Domain 
4

Σ max Σ

=
=

=
Empirical Risk Minimization Robust Optimization Risk Invariance

3rd trick
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View-Invariant Bellman Residuals (VIBR)

28/10/2022

(Pairwise Bellman residuals)

(Risk Invariance)

Invariant value function / cross domain Bellman residuals / risk invariance

Training objective:

[Dupuis et  al., 23]
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Risk Minimization
Intuition of the effect on generalization
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Comparison with baselines
Pure RL

– DrQ: Regularization of Q-value network by 
data augmentation + ensembling

RL + Representation Learning
– CURL: Contrastive learning auxiliary task
– SPR: Self-supervised next latent state 

prediction auxiliary task
– DBC: Learns task-relevant representations 

with a metric-based self-supervised objective
– FM: Naïve baseline of feature matching 

(MSE)

VIBR trained on C0 and C2
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Robust Evaluation

Results over 4 random seeds
– Normalized Return per episode
– Bootstrapped metrics over seed and evaluation episode:

Robust Average (IQM)
Generalization Gap

https://github.com/google-research/rliable
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Detailed results per curriculum

VIBR flattens the performance curve across domains
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Detailed results per curriculum

Training distribution matters
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Failure case of invariant representation learning
- FM & CURL auxiliary tasks are completely 
orthogonal to RL
- SPR & DBC are more aligned with RL
- Better alignment seem to help performance 
a little (expected)
- FM completely fails: auxiliary task ignored 
by model
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Impact of variance regularization vs multi-view 
training

Optimal choice of beta depends on the task
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Conclusion

Reinforcement learning has difficulties linked to the robotics 
context, but can exploit constraints/knowledge

Take advantage of the domain
– Exploit constraints on relevant info (low dim, controllable, predictable…)
– Exploit unsupervised (self supervised) learning
– Learn in simulation using easy to simulate features (e.g. 3D motion)
– Exploit efficiently domain randomization

Many approaches
– Many existing approaches that can be combined
– Proposed a new way to combine AE & models, perform continual 

learning, increase invariance to noise…
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Perspectives
Very active area

– Many Sim to Real transfer approaches (domain randomization, domain 
adaptation, …)

– Many new state representation learning approaches associated to 
unsupervised pretraining of CNNs

– Some fixed representation may be useful (e.g., Fourrier features)

– Define / improve representation disentanglement (explicability)
– Merge everything ?

• Supervised/self supervised pre-training in simulation with SRL, 
randomization, view invariance,…

• Ensure disentanglement/interpretability in simulation
• Fine tuning on real data with offline RL, or online with SRL as auxiliary tasks

[Brellman et al. 21]
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