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Introduction

Safe Trajectory Planning
• Motivation
• Methods for single/multiple agent(s)
• Uncertainty
• Scalability?
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Trajectory Planning
Motivation

1 Single autonomous vehicle or set of autonomous vehicles

2 Known initial locations
3 Aiming to known target points
4 What is the trajectory (ies) to follow with the best performance criterion ?
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Trajectory Planning
Motivation : A simple situation
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Trajectory Planning
Motivation : A more complex situation
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Trajectory Planning
Summarizing the issues

Issues in path planning

with collision avoidance

Producing feasible

trajectories

Accounting for 

the dynamics
Complex

environment

Complex

Maps/Terrains

Finding shortest path

or with cheapest cost

Movable obstacles 

not initially known

Accounting

with multi
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Presentation

A subject of interest
Numerous survey papers focusing on specific aspects (chronological order) for UAV
domain
• A survey of motion planning algorithms from the perspective of autonomous UAV

guidance [1]
• Optimization approaches for civil applications of unmanned aerial vehicles (UAVs)

or aerial drones : A survey [2]
• Overview of path-planning and obstacle avoidance algorithms for UAVs : A

comparative study [3]
• Survey on computational-intelligence-based UAV path planning [4]
• A review : On path planning strategies for navigation of mobile robot [5]
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Trajectory planning
A first taxonomy
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Graph based Search
Deterministic Graph based Search

Graph Representation
• Iterative algorithms can handle most

graph representation
• Grids used for simplicity of

representation
• Representation may be selected for

flexibility, adaptation, complexity
• Graphs G = S; E correspond to set

of nodes S connected by edges E

• Quadtree : Starting from rough graph,
refining close to obstacles

• Voronoï : Edges built to be equally
distant form obstacles (vertices at
intersection)

• Visibility Graph : Environment with
obstacles as 2D Polygons, Edges and
vertices located on polygons boundary

• Voronoï : Edges built to be equally
distant form obstacles (vertices at
intersection)
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Graph based Search
Deterministic Graph based Search
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Graph based Search
Deterministic Graph based Search

Graph search problem
• Known graph G = S; E

• Start vertex : sstart ∈ S

• Goal vertex : sgoal ∈ S

• Computation of costs along the
edges : g(si ; sj)

• Heuristic : easy to compute
approximation of cost
h : s × sgoal → R

• Result : Path (sstart ; si ; sgoal)

Start

S1

Goal

S2

g(sstart ; s1) g(s2; sgoal)

g(sstart ; s2) g(s2; s1)

h(sstart ; sgoal)

h(s2; sgoal)

h(s1; sgoal)
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Graph based Search
Deterministic Graph based Search

Graph search problem
• g : cost so far
g(s) = g(sprec) + cost(sprec ; s)

• h : heuristic cost to go h(s; sgoal)

• f : evaluation of a tentative path
g(s) + h(s)

Start

S1

Goal

S2

g(sstart ; s1) g(s2; sgoal)

g(sstart ; s2) g(s2; s1)

h(sstart ; sgoal)

h(s2; sgoal)

h(s1; sgoal)
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Graph based Search
Deterministic Graph based Search

Method for deterministic graph based search
Initial algorithm Dijkstra’s Algorithm [7] deterministic search without heuristic
⇒ Development of heuristic-based algorithm A∗ and variants (e. g. [8], [9], [10])
• Requires definition of admissible heuristics
• Heuristic function h(s; sgoal) is admissible : h(s; sgoal) ≤ cost(s; s ′) + h(s ′; sgoal).
• Examples of heuristic : ∆x and ∆y difference of coordinates along x and y axes

• Euclidian distance
p

∆x2 +∆y 2 +∆z2

• Manhattan distance ∆x +∆y +∆z
• Max(∆x;∆y;∆z)
• Potentially weighted by wx;y;z
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Graph based Search
Deterministic Graph based Search

Iterative Search
What if graph evolves?
• Initial solution determined on

known graph

• Graph is modified (e.g.
obstacles detected)

• Requires to recalculate path
• Is it necessary to recompute

the whole path?

sstart

s1

s2 s3

s4

sgoal1

2

3

5

2

3

1

2
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Graph based Search
Deterministic Graph based Search

Incremental search methods
How can initial path can be reused? ⇒ Necessary to save information
• Initial optimal results
• optimal path planned in terms of vertices
• Values of g functions

⇒ Detection of inconsistent paths
• Perform updated graph search
• Check variation of edge costs
• Check removed or added vertices
• Find local consistency

⇒ Replace inconsistent paths by consistent paths
⇒ Reuse the parts of the graphs that were not affected
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Graph based Search
Deterministic Incremental Search

Some algorithms for incremental Graph search
• General

• Incremental All Pair Shortest Path (e. g. [11] )
• Lifelong Planning A∗ [12]

• Often used for vehicle path planning
• D∗ Algorithm [13]
• Improved version of D∗ : D∗ Lite [14]

• Integrating Temporal Logic
• Propositional Satisfiability and Temporal Planning (e. g. [15]).

• Incremental Temporal Consistency (ITC) [16]
• Space Filling Trees [17]
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Graph Based Search
Deterministic Incremental Search

The D∗ Lite algorithm
Why use D∗ Lite?
• Efficient for robot navigation in partly unknown environment
• Easy to implement

What are the basic principles?

D∗ Lite
Based on Lifelong Planning A∗

• Use of functions g , cost, h as A∗

• Additional function rhs(s) : one step prediction based on g values :
mins ′∈Spredg(s) + cost(s)
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Graph Based Search
Deterministic Incremental Search

D∗ Lite
• Classical determination of optimal

path (same A∗)

• Progression along optimal path :
Graph is modified (e.g. obstacles
detected)

• Computation of predicted rhs(s)

• Updating of the path
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Graph Based Search
Deterministic Incremental Search
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Graph Based Search
Stochastic search

Two main approaches
• Probabilistic Road Map : Creation of a graph by random search, then definition of

a path
⇒ Reactive Deformation Roadmap (local variations for attractivity or repulsion)
⇒ Flexible Anytime Dynamic PRM (anytime and adaptivity to local unknown
environment)

• Rapid Random Tree
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Graph Based Search
Stochastic search

Rapid Random Tree
• Starting Point and End Point
• From starting point : build tree by random selection of vertices and growing

branches
• Check for newly created vertex : outside an obstacle or forbidden zone
• Edge construction : Verification of obstacle avoidance

Examples in [18], [19]
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Graph Based Search
Stochastic search

RRT ∗ Algorithm
Exploration tree G, Set of Vertices V , Set of edges E

• Initialize (G; V; E) by considering starting point,
• Define cost between two points, e. g. distance, enregy, time
• Random generation of xrand =∈ Obstj find xnear ∈ G, xnear = Argmin(d(xi ; xrand)),
xi ∈ G with d to be defined

• Build the new vertex xnew reachable from xnear in the direction of xrand without
obstacles collisions.

• Check with other vertices of G if xnew can be reached more economically from
xclose ∈ G,

• If true, replace xnear by xclose add xnew to G and [xclose ; xnew ] to E
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Graph Based Search
Comparisons A∗ and RRT ∗

Comparisons : zone with Identical characteristics
Similar cost Performances for A∗ and RRT ∗ (faster) for example 1
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Graph Based Search
Comparisons A∗ and RRT ∗

Comparisons : zone with Identical characteristics
A∗ more efficient for cost performances in example 2
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Trajectory planning
The optimization based approaches
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Trajectory planning
Trajectory optimization

Deterministic Search for controlled trajectory
• Functional optimization
• Including dynamics
• Under constraints (feasible path)
• Set of inputs that minimizes a cost
J(p)

• Satisfies p ∈ P, P set of feasible
paths

Start

Position

Goal

Position
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Trajectory optimization
General expression

Optimal Control Problem
Determine x(t) and u(t)

• Minimizing :
g(x(0); x(tf )) +

R tf
0

c(x(t); u(t))dt

• Subject to :
ẋ = f (x(t); u(t));∀t ∈ [t; tf ]
Dynamics

• Final constraints e(x(0); x(tf )) = 0

• Current constraints,
h(x(t); u(t)) ≤ 0; ∀ ∈ [t; tf ]
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General expression

Optimal Control Problem
Determine x(t) and u(t)

• Minimizing :
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Dynamics

• Final constraints e(x(0); x(tf )) = 0

• Current constraints,
h(x(t); u(t)) ≤ 0; ∀ ∈ [t; tf ]

Optimal Control Problem
• Usually difficult to solve
• Mainly tackled by

1 Discretize (see e.g. [20]
2 Solve (potentially on shorter time

horizon) as a (Non)-Linear
Programming problem

3 Interpolate between points
• Model Predictive receding horizon
• Bertsein Polynomials
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Trajectory optimization
Discrete formulation

Discretization on a limited time horizon
t̃ = [t0; : : : ; tN ] x̃ = [x0; : : : ; xN ] and ũ = [u0; : : : ; uN ]

• Minimizing : g(x(0); x(tf )) +
PN

j=0 wjc(xj ; uj)

• Subject to :
˛̨̨PN

j=0 Di jxj − f (xi ; ui )
˛̨̨
≤ 1

N‹

• Final constraints |e(x(0); xN)| ≤ 1
N‹

• Current constraints, h(xi ; ui ) ≤ 1 1
N‹

• Introduce bounds (actuation limits) and initial and final equalities x(0) = x0 and
x(tf ) = xN

• Search for optimal sequence (LP, NLP Mixed integer programming) and apply
only first components

Examples : Cooperative trajectory [21], cooperative trajectory for search and track [22],
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Trajectory optimization
Discrete formulation

Use of polynomial basis
Use of Berstein polynomials (in France Béziers Curves) [23]
• Select Berstein approximation xN(t) =

PN
j=0 cjbj;N(t), uN(t) =

PN
j=0 cu;jbj;N(t)

• with polynomial basis bj;N(t) =
N!

j!(N−j)! t
N(tf − t)N−j

• Discretize time according to Berstein approximation : tj = j tf
N
; j = 0; : : : ; N

• Use property of BP for differentiation and convexity approximation
• Search for optimal coefficients by de Casteljau algorithm

⇒ Efficient determination of single or multi agent trajectories, see e.g. [24], [25], [26]
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Trajectory optimization
Discrete formulation

Illustration
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Trajectory optimization
Search by stochastic optimization

Various approaches
Bio-inspired methods [27]
• Ant colony [28]
• Firefly algorithm [29]

Monte-Carlo
• Particle Swarm Optimization [30]
• Genetic algorithm (Multi agent extension [31])
• Potential field algorithm [32] (efficiently combined with RRT )

⇒ increased use of RL or ML approaches
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Multi-Agent Path Finding
Context

Objectives
• Defining a set of trajectories so that agents can safely rejoin their final positions
• Similar requirements in terms of performances, (length, energy spend)
• Dynamics constraints, obstacle avoidance
→ Additional Constraints : Mutual Avoidance
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Multi-Agent Path Finding
Extensions of single-agent approaches

Main difficulties
• Combinatorial complexity : n trajectories to design with interactions Np hard
• Integration of mutual information : What does one know about evolution of

neighbors
• Time description required : knowledge on dynamics, can the trajectory be hold
• Potential adversarial decisions for criterion optimization
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Multi-Agent Path Finding
Extensions of single-agent approaches

Direct extensions
• RRT ∗ with potential fields [32]
• Short time horizon control laws [21], [22],
• Berstein polynomials [26]

Extensions of graph based methods
• Prioritized Planning
• Safe interval path planning : SIPP
• Conflict-based search for optimal multi-agent pathfinding : CBS
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Multi-Agent Path Finding
Extensions of graph based method

Prioritized planning
• Use of Path planning method for single agent [33]
• Each agent receives a priority level for determining its path
• Plan must be performed avoiding conflicts with higher priority agents
• Definition of priority is made by a supervisor

Safe interval path planning
• Determination of path by A∗ in a dynamic environment [34]
• Division of the time space into intervals
• Path must insure safety and obstacles avoidance in the intervals
• Extension of reactive path planning methods
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Multi-Agent Path Finding
Extensions of graph based method

Conflict-based search
• Determination of path with two-level optimization [35]
• Superior level for conflict identification
• Introducing new constraints
• Lower level search for optimal path by using A∗ type algorithm
• Extension of approach uses multi-objective [36]

Extensions of graph based methods
• CBS : Optimal search with conflict resolution, but heavy computation
• SIPP : Fast determination but conflicts are not ruled out
• Prioritizing : comparisons proposed in [37]
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Uncertainty

How to account for uncertainty
• Multiple sources of uncertainty
• Obstacles

• Obstacles locations
• Shape of obstacles

• Other agents
• Real locations
• Intentions
• Dynamics

• Agent
• Real locations
• Dynamics

32SAUTOSH. Piet-Lahanier24/10/2023



Uncertainty

How to account for uncertainty
• Multiple sources of uncertainty
• Obstacles

• Obstacles locations
• Shape of obstacles

• Other agents
• Real locations
• Intentions
• Dynamics

→ Agent
• Real locations
• Dynamics

32SAUTOSH. Piet-Lahanier24/10/2023



Uncertainty

Risk-aware trajectories
• Integration of risk in the cost [38]

• Reduction of propagated states by prediction of risks
• Limitation of collision

• Determination of probabilistic boundaries [39]
• Discrete type dynamics
• Gaussian motion
• Sensing uncertainty

• AI search
• Use of RL [40], [41]
• Determination of rewards
• Construction of the learning bases
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Summarizing
Safe path planning

Graph based search
• Modelling as graph : integration of obstacles, reflect

seeker information
• Integration of dynamics : adaptation of cost

functions
• Dynamic changes : can be performed without

reprocessing
• Uncertainty : more difficult for uncertainty on agents
• Scalability : Multi-agent in RRT ∗, prioritized/conflict

based
• Swarms : extension of SIPP and CBS to large fleet

Major issues : mostly defined for 2D, definition of costs in-
tegrating information

Optimal control
• Transformation of obstacles into constraints
• Integration of dynamics straightforwards
• Dynamic changes : adaptation of time horizon
• Uncertainty : propagation of probability with state

dynamics
• Scalability : Multi-agent extensions with multi

criterion (Pareto optimization)
• Swarms : trajectories designed with polynomial

based approach,

Major issues : definition of costs integrating information,
discretization, constraints
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